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YAĞMUR CANER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

JULY 2021





Approval of the thesis:

TWO-MODE PROBABILISTIC DISTANCE CLUSTERING
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Supervisor, Industrial Engineering, METU

Examining Committee Members:

Prof. Dr. Sinan Gürel
Industrial Engineering, METU

Prof. Dr. Cem İyigün
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ABSTRACT

TWO-MODE PROBABILISTIC DISTANCE CLUSTERING

Caner, Yağmur

M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Cem İyigün

July 2021, 112 pages

Probabilistic Distance Clustering (PDC) is a soft clustering technique constructed

around some axioms. It is a center-based approach and assigns each data point to

multiple clusters with a membership probability. The PDC is applicable for one-

mode data sets, where each data points’ quantitative or qualitative values over each

feature are stored.

This study focuses on PDC and consists of two main contributions. Firstly, the rele-

vance of PDC to some other probabilistic models in the literature is examined. We

show that PDC method and its axioms explain models from marketing, location the-

ory, and unsupervised learning. Secondly, this thesis proposes two original solution

methods for the soft Two-Mode Clustering (TMC) problem. Two-mode clustering is

a technique to cluster two-mode data, representing a linkage between two sets of data

points. A comprehensive computational study is conducted on continuous, noisy, and

binary data sets. The use of membership probabilities for decision-making is also

discussed. This study will be the pioneer soft assignment approach for two-mode

clustering literature.
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ÖZ

ÇİFT MODLU OLASILIKSAL MESAFE KÜMELEMESİ

Caner, Yağmur

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Cem İyigün

Temmuz 2021 , 112 sayfa

Olasılıksal Mesafe Kümelemesi (PDC), bazı aksiyomlar etrafında oluşturulmuş yu-

muşak bir kümeleme tekniğidir. Merkez tabanlı bir yaklaşımdır ve her bir veri nok-

tasını üyelik olasılığı ile birden çok kümeye atar. PDC, her veri noktasının her bir

özellik üzerindeki nicel veya nitel değerlerini saklayan tek modlu veri kümeleri için

geçerlidir.

Bu çalışma PDC’ye odaklanır ve iki ana katkıdan oluşur. İlk olarak, PDC’nin lite-

ratürdeki diğer bazı olasılıksal modellerle ilgisi incelenmiştir. PDC yönteminin ve

aksiyomlarının pazarlama, konum teorisi ve gözetimsiz öğrenme modellerini açık-

ladığını gösterilmiştir. İkinci olarak, bu tez yumuşak Çift Modlu Kümeleme (TMC)

problemi için iki orijinal çözüm yöntemi önermektedir. Çift modlu kümeleme, iki veri

noktası kümesi arasındaki bağlantıyı temsil eden çift modlu verileri kümeleme tekni-

ğidir. Sürekli, gürültülü ve ikili veri kümeleri üzerinde kapsamlı bir hesaplama deneyi

yürütülmüştür. Üyelik olasılıklarının karar verme için kullanımı da tartışılmaktadır.

Bu çalışma, çift modlu kümeleme literatürü için öncü yumuşak atama yaklaşımı ola-

caktır.
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Anahtar Kelimeler: kümeleme, olasılıksal kümeleme, tek modlu veri, konum teorisi,

çift modlu veri kümeleme
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CHAPTER 1

INTRODUCTION

Clustering is a data mining technique to identify the group of unlabelled examples

of a data set that are similar and dissimilar to each other according to a predefined

distance metric or similarity measure. Clustering assumes that the data set has a

cluster substructure. Otherwise, the whole data set forms one cluster, or each instance

becomes a cluster itself. In either case, the resulting structure cannot yield useful

information.

Clustering methods are divided into two main categories, which are partitional and

hierarchical. In hierarchical clustering, clusters are formed by a similarity measure

without a cluster center or an objective function. Partitional clusters are represented

by a cluster center (prototype), and they are formed by minimizing a defined objec-

tive, which is a function of distance from each example to cluster centers. Therefore,

a partitional clustering problem consists of two subproblems: finding cluster centers

and assignments of data points (examples) to these centers. Assignments can be hard

(crisp) or soft. For the hard assignments, each instance (entity, data point) of the data

set is assigned to exactly one cluster, which leads to disjoint clusters. On the other

hand, the soft assignment method assigns each entity to clusters with some member-

ship degree (probability).

Properties of the data set are needed to be considered while deciding on the clustering

method. A rectangular data set can be one-mode or two-mode. One-mode data sets

have entities (data points, objects) in rows and features in columns. They store each

entity’s quantitative (continuous or binary) or qualitative (categorical) values over

each feature. On the other hand, a two-mode data set contains two distinct sets of

entities in rows and columns. It stores a degree of linkage, dependency, frequency, or

1



trend of each row and column entity pair.

In this study, our focus is Probabilistic Distance Clustering (PDC) [9], which is a soft

clustering approach for one-mode data sets. The contribution of this work is two-fold.

Firstly, we studied PDC within the framework of the one-mode clustering model.

The PDC is a model constructed around some principles. We discuss the relation-

ship of PDC with various problems from different contexts. We study Huff Model

from marketing, K-Harmonic Means and Fuzzy c-Means algorithms from clustering,

and Gravity p-Median Model from location literature. We reveal that those problems

originated from PDC principles. The other contribution of this study is the devel-

opment of two novel solution approaches for the soft Two-Mode Clustering (TMC)

problem. This work will be the pioneer soft assignment approach for two-mode clus-

tering literature. We drive the theoretical properties of two-mode clustering problems

and formulate the soft TMC by following the PDC principles.

The outline of this study is as follows. In Chapter 2, background information and liter-

ature survey on clustering is provided. In Chapter 3, Probabilistic Distance Clustering

(PDC), which is a one-mode soft clustering approach is introduced. Its relation with

some problems in various contexts will be discussed. The two-mode clustering con-

cept is introduced in Chapter 4, and the development of two novel soft partitioning

approaches for two-mode data sets is explained. Chapter 5 compares these algorithms

with an experimental study. Moreover, two applications on a hypothetical example

and a part-machine group technology problem are provided in that chapter. Finally,

conclusions of the study and future research directions are shared in Chapter 6.
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CHAPTER 2

A BACKGROUND ON THE CLUSTERING

Clustering is a technique that draws inferences by dividing a set of unlabelled in-

stances (objects, entities) into subsets, which are called clusters. The essential pur-

pose of clustering is to identify a meaningful structure, underlying explanatory mech-

anism or patterns, generative characteristics, and clusters in a collection of data points.

Clusters are formed by assigning most similar objects to the same groups and dis-

similar ones to the separate groups as much as possible. In other words, maximum

compactness within the clusters and maximum separation between the clusters are

desired. Thus, there are two general stages of clustering. The first one is defining a

proximity measure between instances to evaluate similarities or dissimilarities of the

objects. The second stage is the selection of the objective that quantifies the overall

proximity of the entities.

Clustering is a well-studied problem in a variety of disciplines. In the literature, it

is used for a wide range of problems such as image processing, object recognition,

bioinformatics, business analytics, data mining. Some other application areas can be

found in literature surveys of [1], [2], [3], and [4].

In the literature, there are a variety of classifications of clustering. For this study, we

construct a taxonomy of clustering problems given in Figure 2.1.

3



Figure 2.1: A taxonomy of clustering.

The first level of distinction is the resulting structure of the clustering approach, which

may be hierarchical and partitional clusters. The methods result in these types are

named hierarchical clustering and partitional clustering, respectively.

2.1 Hierarchical Clustering

In hierarchical clustering, data sets are divided into nested subsets. The generated

clusters have a hierarchical structure, which is interpreted with dendrograms. A den-

drogram is a tree-like structure with some layers that contain different subclusters.

There are two forms of hierarchical clustering methods that are divisive and agglom-

erative.

The divisive method starts with one comprehensive cluster, which contains all in-

stances of the data set. Then, it breaks up the cluster that generates two subclusters

with maximum separation until a termination condition is satisfied. Therefore, this

method is also known as the top-down approach. On the other hand, the agglomer-

4



ative method assigns each object into separate clusters. Later, it merges two clusters

with minimum separation such that the resulting group has maximum compactness

until a termination criterion is met. Thus, it is also called the bottom-up approach.

Either in divisive or agglomerative methods, when the clusters are split or merged

with more than two members, defining distance between those clusters is an issue.

There are three linkage criteria to evaluate proximity between clusters. Single linkage

criteria measure the proximity between two groups by selecting the two closest mem-

bers of them. Complete linkage selects one member from each cluster and calculates

the distance between them. The farthest distance is defined as the distance between

clusters. Average linkage uses the average distance of paired members of all elements

that belong to different clusters.

Although hierarchical clustering is a widespread technique, there are some criticisms

about the method. Firstly, it is hard to find the termination criteria. Secondly, gen-

erally, hierarchical clustering methods do not consider an instance again when it is

assigned, which may result in misclassification. Moreover, they are computationally

expensive. Thus, for the larger data sets, classical hierarchical clustering algorithms

are improved. The upgraded methods are summarized in the literature survey of [2].

2.2 Partitional Clustering

In contrast to the hierarchical approach, partitional clustering assigns objects of the

data set to K clusters without a hierarchical structure. The assignments are obtained

based on a defined objective function. Partitional clustering techniques can be divided

into two categories in terms of data set properties: one-mode data set partitioning and

two-mode data set partitioning.

One-mode partitioning methods are deployed for data sets, usually data matrices

with entities (cases, persons, objects) in rows and attributes (variables, features) in

columns. Thus, elements (entries) of these data sets refer to the values of attributes

for each data point. On the other hand, there may be entities in both rows and columns

in some data sets. In that case, the elements may refer to values of an indicator that

relates the row entities with column entities. An indicator may represent dependen-

5



cies, trends, or linkage between row and column entity pairs. A data set having this

structure is called two-mode data set.

In Section 2.2.1, we introduce the properties of the one-mode data set partitioning

problem and solution approaches. Detailed information and literature review of two-

mode clustering problems are discussed in Chapter 4.

2.2.1 One-Mode Data Set Partitioning

The most common problems and solution approaches of the literature are about the

one-mode clustering problems. We discuss the one-mode data set partitioning on the

plane and network solution space in the subsequent parts.

Partitional Clustering on Plane

When the solution space is plane, by optimizing a specified objective function and

iteratively enhancing the quality of the partitions, partitional clustering algorithms try

to uncover the groupings existent in the data. To choose the prototype points (cluster

centers) that represent each cluster, these algorithms typically require particular user

settings. They are also known as prototype-based clustering methods because of this

[3]. Partitional clustering problems require two main steps: determining the locations

of cluster centers and assignments of the data points to that centers. Partitioning

problems are classified by their assignment type as follows:

Hard (Crisp) Partitioning: Each data point must be assigned to exactly one cluster

that leads to disjoint clusters.

Soft Partitioning: A data point can be assigned to multiple clusters according to

their membership probabilities.

Among hard partitioning approaches, the most extensively used one is the K-means

clustering algorithm introduced by MacQueen [5]. The algorithm initially starts with

K representative (prototype) points. Then, instances are assigned to their closest cen-

troids according to a predefined proximity measure. Based on preceding assignments,

6



centroids are updated. The last two steps are repeated iteratively until the centroids

do not change anymore. K-means model uses squared Euclidean norm (L2 norm)

in the objective function. This objective is also known as Sum of Squared Errors

(SSE). Minimizers of the SSE objective with respect to centroids yield mean values

of cluster members. K-median method is similar to the K-means algorithm. How-

ever, its representative points are cluster medians instead of means, and it minimizes

the sum of absolute distances (L1 norm) between data points and cluster medians.

In the hard partitioning category, there is also the K-medoids algorithm. Instead of

defining the representative points by a function of data set instances (as in K-means

or K-median), the K-medoids algorithm uses K actual data points as representatives

of clusters. Its objective function is the sum of absolute error criterion (L1 norm).

The most known K-medoids approach is the Partitioning Around Medoids (PAM )

algorithm presented by Kaufman and Rousseeuw [6]. PAM minimizes the objective

function by iteratively switching all non-mediod points with medoids until the con-

vergence criterion is met. Since K-median and K-medoids methods employ the L1

norm, they are more robust to outliers.

The soft partitioning approaches use probabilities as membership functions and as-

signs the data points to clusters with the membership probabilities. Thus, member-

ships take a value between 0 and 1. The Fuzzy c-Means (FCM ) [7], K-Harmonic

Means (KHM ) [8], and Probabilistic Distance Clustering (PDC) [9] algorithms are

in this category. Detailed explanations and comparisons of those approaches can be

seen in Chapter 3. There are also probabilistic model-based clustering techniques that

may yield soft assignments. These methods rely on the assumption that data are com-

ing from an underlying probability distribution. Thus, Bayesian Theorem is usually

used to derive the theoretical background of these algorithms. The most conventional

probabilistic model-based clustering method is the Expectation-Maximization (EM )

algorithm [10].

Partitional Clustering on Network

A network is a set of interconnected objects (named nodes or vertices) with edges

(or links) connecting the nodes. In some problem environments, finding the set of
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similar nodes may be needed. In that case, a network clustering approach would

be necessary to detect hidden structures in networks. There are many approaches to

partition networks [3]. However, these studies do not deal with finding a prototype

point on the network.

Finding representative points (or hub locations) on the networks may be essential for

some disciplines such as logistics, marketing, and epidemiology [11].

A center-based network clustering approach is the p-Median Model presented by

Hakimi [12]. The purpose of the p-Median Model is to select p facilities on a net-

work such that the total demand weighted distance from demand nodes to selected

facilities is minimized. In the clustering concept, facilities and demand nodes can be

represented as cluster centers and data points, respectively. The distance is defined as

the length of the shortest path between a data point and cluster center.

Drezner et al. [13] developed a more realistic approach compared to the p-Median

Model by relaxing the assumption that its closest facility serves each demand point.

They follow a soft assignment method, in which demand may be probabilistically

distributed across facilities. This approach is known as the Gravity p-Median (GPM )

model in the literature. The details of this method are given in Chapter 3.
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CHAPTER 3

PROBABILISTIC DISTANCE CLUSTERING AND ITS RELATION TO

SOME PROBLEMS

As stated in Chapter 2, Probabilistic D-Clustering (PDC) [9] is a soft clustering al-

gorithm for one-mode data sets. In this chapter, we discuss the relationship of the

PDC with various problems in different contexts. We examine the Huff Model [14]

in marketing, the Fuzzy c-Means Algorithm (FCM ) [7], and the K-Harmonic Means

Algorithm (KHM ) [8] for clustering, and the Gravity p-Median Model (GPM ) [13]

as a location problem. We reveal that those problems originated from PDC princi-

ples.

In Sections 3.1-3.4, Huff Model, Fuzzy c-Means Algorithm, K-Harmonic Means Al-

gorithm, and Gravity p-Median Model are introduced. Probabilistic D-Clustering

Algorithm and its fundamental properties are given in Section 3.5. Under Section

3.6, we discuss the relation of PDC principles with the problems in Sections 3.1-3.4,

and how PDC principles explain those problems.

3.1 Huff Model

In 1964, Huff presented a model to estimate a trading area [14]. Huff states that the

main focus while estimating a trading area should be on the consumer. Therefore,

his model focuses on the consumer preferences on different firm options. The model

questions how likely a specific consumer prefers a firm among all defined alternatives.

Huff model expresses a consumer preference probability. According to expression, a

consumer i at origin xi visits a shopping center k with a probability of pk(xi) that is

9



proportional to the center’s floor area and inversely proportional to distance or time

traveled to this shopping center

pk(xi) =

Sk
dk(xi)θ
K∑
l=1

Sl
dl(xi)θ

, (3.1)

where

pk(xi): the probability of a customer at the origin xi visits a shopping center k,

Sk: the size of the shopping center k,

dk(xi): a measure of the accessibility of shopping center k from the origin xi,

θ: a parameter which is to be estimated empirically.

Later on, the Huff Model is generalized in the literature by substituting some multi-

plicative utility functions instead of shopping centers’ floor sizes [15].

By the formal definition, the Huff Model has been used in various marketing deci-

sions. Moreover, applications show that the model proposes successful results empir-

ically. Although the model is conceptually sensible and empirically successful, the

hidden mathematical logic has not been discussed.

3.2 Fuzzy c-Means Algorithm

Bezdek et al. presented a fuzzy clustering algorithm in 1984 [7]. Authors criticize

hard (nonfuzzy) partitioning in terms of its inability to measure similarities between

members of a specific cluster. They originate Zadeh’s (1965) [16] idea of a member-

ship function that represents the similarity between a data point with all clusters.

The Fuzzy c-Means approach (FCM ) defines the membership function as follows

pk(xi) ∈ [0, 1], where
K∑
k=1

pk(xi) = 1, i = 1, ..., N. (3.2)

Equation (3.2) means a data point i belongs to cluster k with a membership value

between 0 and 1. Thus, pk(xi) is interpreted as the grades of membership of the data

point xi for the K subsets of data set X.
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The objective of the FCM is to minimize the least square error

ObjFCM =
N∑
i=1

K∑
k=1

pk(xi)m ‖xi − ck ‖2A, (3.3)

where

pk(xi): grade of membership of the data point xi to cluster center ck,

m: weighting exponent, 1 ≤ m <∞,

|| · ||A: induced A-norm on Rn.

When the weighting exponent m = 1, partitioning becomes hard, and all cluster cen-

ters ck are located on the geometric centroids of the data points xi. On the other hand,

as m → ∞, all clusters become equally likely; thus, memberships pk(xi) approach

to 1/K. Thus, increasing m is represented as degrading membership towards the

fuzziest state by authors.

A-norm can be Euclidean, Diagonal, or Mahalanobis. When the norm is selected

as Euclidean dk(xi) =‖ xi − ck ‖I , where I is the identity matrix, and m > 1, the

minimizers of objective in (3.3) for cluster centers are

ck =

N∑
i=1

pk(xi)mxi

N∑
i=1

pk(xi)m
, k = 1, ..., K, (3.4)

where

pk(xi) =

(
K∑
l=1

(
dk(xi)
dl(xi)

)2/(m−1)
)−1

. (3.5)

3.3 K-Harmonic Means Algorithm

K-Harmonic Means Clustering Algorithm (KHM ) [8] was proposed by Zhang et al.

The authors criticize dependency on initialization of the well-known K-Means (KM )

[5] and Expectation-Maximization Algorithm (EM ) [10]. Therefore, they propose a

new center-based algorithm that uses harmonic averages of distances between each

data point xi and cluster center ck as an objective function. In 2000, Zhang proposed

a generalized version of KHM by using the θth power of the Euclidean distance in

the objective function (KHMθ) [17].
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Harmonic average of K numbers is defined as

HA(n1, n2, ..., nK) =
K

K∑
k=1

1

nk

(3.6)

The objective function of KHMθ is

ObjKHMθ
=

N∑
i=1

HA(dk(xi)θ| k = 1, ..., K) =
N∑
i=1

K
K∑
k=1

1

dk(xi)θ

, (3.7)

where dk(xi)θ is the θth power of the Euclidean distance from data point xi to cluster

center ck.

Partial derivatives with respect to cluster centers ck, k = 1, ..., K, are taken and set to

zero in order to derive the center update procedure of the algorithm as follows

δObjKHMθ

δck
=

δ

 N∑
i=1

K
K∑
l=1

1

dl(xi)θ


δck

= 0,

which yields the following centers

ck =

N∑
i=1

xi

dk(xi)θ+2

(
K∑
l=1

1

dl(xi)θ

)2

N∑
i=1

1

dk(xi)θ+2

(
K∑
l=1

1

dl(xi)θ

)2

, k = 1, ..., K. (3.8)

To compare KM , EM , and KHMθ, Zhang derives a unified form of center update

procedures of these algorithms as

ck =

N∑
i=1

pk(xi)w(xi)xi

N∑
i=1

pk(xi)w(xi)
, pk(xi) ≥ 0,

K∑
l=1

pk(xi) = 1, and w(xi) > 0, (3.9)

where

pk(xi): the probability of a given data point xi is assigned to cluster center ck,
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w(xi): weight of the data point xi in the following iterations.

The author states that inKM , pk(xi) is binary as data points are assigned to its closest

cluster center and w(xi) = 1 for all data points. In EM , the membership probability

pk(xi) comes from Bayes’ rule, and since it is normalized, w(xi) = 1 for all data

points.

To obtain membership probability and weight function forKHMθ that satisfies (3.9),

Zhang reintroduces the center update procedure (3.8) as follows

ck =

N∑
i=1

xi

dk(xi)θ+2

(
K∑
l=1

1

dl(xi)θ

)2

N∑
i=1

1

dk(xi)θ+2

(
K∑
l=1

1

dl(xi)θ

)2

=

N∑
i=1

1

dk(xi)θ+2

K∑
l=1

1

dk(xi)θ+2

∗

K∑
l=1

1

dk(xi)θ+2(
K∑
l=1

1

dk(xi)θ

)2 ∗ xi

N∑
i=1

1

dk(xi)θ+2

K∑
l=1

1

dk(xi)θ+2

∗

K∑
l=1

1

dk(xi)θ+2(
K∑
l=1

1

dk(xi)θ

)2

,

(3.10)

which gives

pk(xi) =

1

dk(xi)θ+2

K∑
l=1

1

dk(xi)θ+2

and w(xi) =

K∑
l=1

1

dk(xi)θ+2(
K∑
l=1

1

dk(xi)θ

)2 . (3.11)

Although pk(xi) and w(xi) satisfy (3.9), the derivation procedure in (3.10) is ques-

tionable as a different representation may be derived for membership probability and

weight that satisfies (3.9). See Section 3.6.3.

3.4 Gravity p-Median Model

A probabilistic perspective was applied to the classical p-Median Problem [12] by

Drezner et al. in 2006 [13]. The assumption that every customer visits the facility

closest to it of the p-Median Problem (PM ) is relaxed. In the Gravity p-Median

Model (GPM ), given the locations of facilities, a customer i at the origin xi prefers

a specific facility k with a probability of pk(xi).
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The objective function of the GPM is to minimize the total distance traveled by the

customers to their probabilistically selected facilities

ObjGPM =
N∑
i=1

K∑
k=1

w(xi)dk(xi)pk(xi), (3.12)

where

w(xi): demand at origin xi,

pk(xi): the probability of the customers i at origin xi prefers facility k,

d(xi): distance between customer i at origin xi and facility k at origin ck.

The probability definition of the Huff Model (3.1) is used with the following repre-

sentation

pk(xi) =
uk(dk(xi))
K∑
l=1

ul(dl(xi))
, (3.13)

where

uk(dk(xi)): the distance dependent utility of a facility k for a demand point xi.

The utility function uk(dk(xi)) can be any distance decay function such as dk(xi)−θ

or e−θdk(xi).

Let the {k = 1, ..., K} is the set of facilities, the optimization problem of GPM is

minimize
pk(xi)

N∑
i=1

K∑
k=1

w(xi)dk(xi)pk(xi)

subject to
K∑
k=1

pk(xi) = 1, i = 1, . . . , N,

pk(xi) ≥ 0, i = 1, . . . , N and k = 1, . . . , K.

(3.14)

Optimality conditions of the GPM problem in (3.14) do not yield the probabilities in

(3.13). Thus, the GPM problem in (3.14) should be revised as explained in Section

3.6.4. In addition, the authors restrict facility locations with customer origins. This

assumption makes the problem combinatorial. That is why they could work with the

objective function in (3.12) by applying the steepest descent and tabu search heuristic

approaches. Analysis of the GPM when facilities can be located anywhere on the
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network is remarked as future work. If the objective function in (3.12) is reconstructed

as in Section 3.6.4, restrictions on facility locations can be relaxed.

3.5 Probabilistic D-Clustering

Israel and Iyigun [9] presented a new algorithm for probabilistic clustering in 2008.

This algorithm proposes a generalization of the Weiszfeld method to multiple cen-

ters in the location theory. The advantages of the proposed method are stated as its

simplicity and speed. Moreover, the algorithm is insensitive to outliers.

The PDC is based on a root principle that assumes the membership probability of a

data point is inversely proportional to the distance from the cluster center as follows

Principle 1. For each data point xi of data set X, and each cluster ck,

pk(xi)dk(xi) = D(xi), (3.15)

where

pk(xi): the membership probability of given the data point i at the origin xi is as-

signed to cluster center k at the origin ck,

dk(xi) = d(xi, ck): distance between data point xi and cluster center ck,

D(xi): a constant, depending on xi.

Principle 1 in (3.15) means that given the cluster centers, a data point xi is more likely

to be assigned to its closer cluster centers.

3.5.1 The Membership Probabilities

With Principle 1 (3.15), and the fact that probabilities add up to one, the following

theorem is obtained.

Theorem 1. Principle 1 yields following membership probabilities for a data point

xi

pk(xi) =

1

dk(xi)
K∑
l=1

1

dl(xi)

, k = 1, ..., K. (3.16)
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Proof. Using (3.15) the following can be written for two cluster centers l, and k

pl(xi) =
pk(xi)dk(xi)

dl(xi)
. (3.17)

Together with (3.17) and the fact that probabilities add to one, we have
K∑
l=1

pk(xi)dk(xi)
dl(xi)

= 1,

pk(xi)dk(xi)
K∑
l=1

1

dl(xi)
= 1,

pk(xi)
K∑
l=1

1

dl(xi)
=

1

dk(xi)
,

pk(xi) =

1

dk(xi)
K∑
l=1

1

dl(xi)

,

proving (3.16).

3.5.2 The Joint Distance Function

Recall that in Principle 1 (3.15), D(xi) is a function of xi.

Theorem 2. Principle 1 yields the constant D(xi) as

D(xi) =
1

K∑
k=1

1

dk(xi)

. (3.18)

Proof. Using (3.15) the following can be written for cluster k

pk(xi) =
D(xi)
dk(xi)

, k = 1, ..., K. (3.19)

With (3.19) and the fact that probabilities add to one, we have
K∑
k=1

D(xi)
dk(xi)

= 1,

D(xi)
K∑
k=1

1

dk(xi)
= 1,

D(xi) =
1

K∑
k=1

1

dk(xi)

,

proving (3.18)

16



The constant D(xi) is defined as the joint distance function (JDF) of xi and equal to

the harmonic averages of distances between each data point xi and cluster center ck
over number of clusters K as

D(xi) =
1

K∑
k=1

1

dk(xi)

=

K
K∑
k=1

1

dk(xi)
K

=
HA(dk(xi)| k = 1, ..., K)

K
.

Then, the joint distance function of the whole data set X is the sum of constant D(xi)

over all data points {xi | i = 1, ..., N} as follows

N∑
i=1

D(xi) =
N∑
i=1

HA(dk(xi)| k = 1, ..., K)

K
(3.20)

=
1

K

N∑
i=1

HA(dk(xi)| k = 1, ..., K). (3.21)

3.5.3 The Optimization Problem of the Method

As the nature of the clustering problem, the minimum total distance between all data

points and the cluster centers is desired. In the probabilistic assignment, one can

easily guess that the expected total distance between all data points and the cluster

centers should be minimized. Therefore, one may expect the following optimization

problem

minimize
pk(xi), ck

N∑
i=1

K∑
k=1

dk(xi)pk(xi)

subject to
K∑
k=1

pk(xi) = 1, i = 1, . . . , N,

pk(xi) ≥ 0, i = 1, . . . , N and k = 1, . . . , K.

(3.22)

However, in that case a solution may not exist as explained in Proposition 1.

Proposition 1. Optimality conditions of the problem in (3.22) may not yield a solution

for N ≥ 3.
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Proof. For simplicity consider the case K = 2, and centers ck are given then the

problem (3.22) becomes

minimize
p1(xi), p2(xi)

N∑
i=1

d1(xi)p1(xi) + d2(xi)p2(xi)

subject to p1(xi) + p2(xi) = 1, i = 1, . . . , N,

p1(xi), p2(xi) ≥ 0, i = 1, . . . , N.

(3.23)

The Lagrangian of the problem (3.23) is

L(p1(xi), p2(xi), λi) =

(
N∑
i=1

d1(xi)p1(xi) + d2(xi)p2(xi)

)
− λi(p1(xi) + p2(xi)− 1)

∂L
∂p1(xi)

= d1(xi)− λi = 0, i = 1, ..., N (3.24)

∂L
∂p2(xi)

= d2(xi)− λi = 0, i = 1, ..., N (3.25)

∂L
∂λi

= p1(xi) + p2(xi)− 1 = 0, i = 1, ..., N

Equations (3.24-3.25) yield

d1(xi) = d2(xi), i = 1, ..., N, (3.26)

which gives alternative solutions for cluster centers that are lying on a line formed

by equal distances from data points. Thus, when N ≥ 3, even a solution may not

exist.

Teboulle [18], and Ben-Israel et al. [9] prove that the smoothed version of the classical

clustering problem, min{d1, d2}, uses the squares of probabilities in the objective.

The optimization problem is then

minimize
pk(xi), ck

N∑
i=1

K∑
k=1

dk(xi)pk(xi)2

subject to
K∑
k=1

pk(xi) = 1, i = 1, . . . , N,

pk(xi) ≥ 0, i = 1, . . . , N and k = 1, . . . , K.

(3.27)
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In the case centers are known, the objective of the problem (3.27) becomes function

of membership probabilities as follows

minimize
pk(xi)

N∑
i=1

K∑
k=1

dk(xi)pk(xi)2

subject to
K∑
k=1

pk(xi) = 1, i = 1, . . . , N,

pk(xi) ≥ 0, i = 1, . . . , N and k = 1, . . . , K

(3.28)

The problem (3.28) is a convex constraint optimization model so that its optimality

conditions can be found Lagrangian method as in Proposition 1. Optimality condi-

tions of (3.28) give Principle 1 in (3.15).

3.5.4 Centers

In the case of probabilities are given, the objective function in (3.27) can be written

as function of cluster centers

ObjPDC =
N∑
i=1

K∑
k=1

d(xi, ck)pk(xi)2.

Theorem 3. Let the distance function d(xi, ck) be Euclidean so that

ObjPDC =
N∑
i=1

K∑
k=1

‖xi − ck ‖ pk(xi)2, (3.29)

and assume ck and xi are not equal for any data point i. Then the minimizers ck are

obtained by

ck =

N∑
i=1

uk(xi)xi

N∑
i=1

uk(xi)
, k = 1, ..., K, (3.30)

where

uk(xi) =
pk(xi)2

d(xi, ck)
. (3.31)

Proof. The gradient of d(xi, ck) =‖xi − ck ‖ with respect to ck is

∇ck ‖xi − ck ‖= −
xi − ck
‖xi − ck ‖

= − xi − ck
d(xi, ck)

.
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Therefore, the gradient of (3.29) with respect to ck is

∇ckObjPDC = −
N∑
i=1

xi − ck
d(xi, ck)

pk(xi)2

Setting the gradient equal to zero

−
N∑
i=1

xi − ck
d(xi, ck)

pk(xi)2 =0,

N∑
i=1

xi − ck
d(xi, ck)

pk(xi)2 =0,

N∑
i=1

pk(xi)2

d(xi, ck)
xi −

N∑
i=1

pk(xi)2

d(xi, ck)
ck =0,

N∑
i=1

pk(xi)2

d(xi, ck)
xi − ck

N∑
i=1

pk(xi)2

d(xi, ck)
=0,

gives

ck =

N∑
i=1

pk(xi)2

d(xi, ck)
xi

N∑
i=1

pk(xi)2

d(xi, ck)

,

proving (3.30) and (3.31).

3.5.5 Generalized Principles

Iyigun and Ben-Israel [19] generalize Principle 1. In this section, generalized ver-

sions of PDC are presented. The membership probabilities, joint distance function,

objective function, and center update procedure are summarized for each principle in

Table 3.1-3.3.

Exponents of membership probability and distance function can be used in PDC.

Generalization of Principle 1 is given as Principle 2.

Principle 2. For each data point xi ∈ X, and each cluster center ck,

pk(xi)αdk(xi)β = C(xi), (3.32)

where α, β are positive and C(xi) is constant depending on data point xi.
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Table 3.1: Properties of Principle 2.

Membership Probability pk(xi) =

1

dk(xi)β/α
K∑
l=1

1

dl(xi)β/α

, k = 1, ..., K (3.33)

Joint Distance Function C(xi) =

[
HA(dk(xi)β/α| k = 1, ..., K)

K

]α
(3.34)

Objective Function ObjPDC =
N∑
i=1

K∑
k=1

dk(xi)βpk(xi)α+1 (3.35)

Centers ck =

N∑
i=1

dk(xi)β−2pk(xi)α+1xi

N∑
i=1

dk(xi)β−2pk(xi)α+1

(3.36)

Ben-Israel and Iyigun [9] state that any distance decay function can be used in Prin-

ciple 1 in (3.15). They examine the exponential function as Principle 3.

Principle 3. For each data point xi ∈ X, and each cluster center ck,

pk(xi)edk(xi) = E(xi), (3.37)

where E(xi) is constant depending on data point xi.
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Table 3.2: Properties of Principle 3.

Membership Probability pk(xi) =

1

edk(xi)
K∑
l=1

1

edl(xi)

, k = 1, ..., K (3.38)

Joint Distance Function E(xi) =
HA(edk(xi)| k = 1, ..., K)

K
(3.39)

Objective Function ObjPDC =
N∑
i=1

K∑
k=1

edk(xi)pk(xi)2 (3.40)

Centers ck =

N∑
i=1

dk(xi)−1pk(xi)2edk(xi)xi

N∑
i=1

dk(xi)−1pk(xi)2edk(xi)
(3.41)

In the first three principles, cluster sizes are assumed to be equal. Iyigun and Ben-

Israel[19] consider the case of cluster sizes are distinct and adjust Principle 1 for

cluster size as Principle 4.

Principle 4. For each data point xi ∈ X, and each cluster center ck,

pk(xi)dk(xi)
qk

= B(xi), (3.42)

where qk is the size of cluster k and B(xi) is constant depending on data point xi.
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Table 3.3: Properties of Principle 4.

Membership Probability pk(xi) =

qk
dk(xi)
K∑
l=1

ql
dl(xi)

, k = 1, ..., K (3.43)

Joint Distance Function B(xi) =
HA(dk(xi)/qk| k = 1, ..., K)

K
(3.44)

Objective Function ObjPDC =
N∑
i=1

K∑
k=1

dk(xi)pk(xi)2

qk
(3.45)

Centers ck =

N∑
i=1

dk(xi)−1pk(xi)2xi

N∑
i=1

dk(xi)−1pk(xi)2
(3.46)

3.6 A Unified View on Probabilistic Methods

In this section, the structure of models explained in Sections 3.1-3.4 is discussed.

Their constructions are criticized and revisited from the perspective of PDC princi-

ples (Section 3.5). Although those models are from different research topics, namely

clustering, marketing, and location models, PDC principles can explain their con-

cepts and theories as discussed in Sections 3.6.1-3.6.4.

3.6.1 Principles of Huff Model

In Section 3.1, Huff Model is introduced. We criticize that the model is conceptually

meaningful but lacks theoretical explanation. Therefore, in this section, we reexamine

the Huff Model probability expression under the umbrella of PDC principles.

Proposition 2. Principle 2 in (3.32), and Principle 4 in (3.42) explain Huff Model’s
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probability definition.

Proof. Huff Model’s probability expression in (3.1) can be written as

pk(xi)
dk(xi)θ

Sk
=

1
K∑
l=1

Sl
dl(xi)θ

. (3.47)

The right-hand side of (3.47) is the reciprocal of the sum of store areas over distances

between customer i and stores l. Since in the Huff model, locations of shopping

centers cl are predefined, the right-hand side of (3.47) is a constant depending on the

location of customer xi. In particular, for K = 2, we can write

p1(xi)d1(xi)θ

S1

=
p2(xi)d2(xi)θ

S2

,

p1(xi)
d1(xi)θ

S1

= (1− p1(xi))
d2(xi)θ

S2

,

p1(xi)
(
d1(xi)θ

S1

+
d2(xi)θ

S2

)
=
d2(xi)θ

S2

,

p1(xi) =

d2(xi)θ

S2(
d1(xi)θ

S1

+
d2(xi)θ

S2

) ,

p1(xi) =

d2(xi)θ

S2(
d1(xi)θ

S1

+
d2(xi)θ

S2

)
S1S2

d1(xi)θd2(xi)θ
S1S2

d1(xi)θd2(xi)θ

,

which yields the following probability

p1(xi) =

S1

d1(xi)θ
S1

d1(xi)θ
+

S2

d2(xi)θ

,

and similarly,

p2(xi) =

S2

d2(xi)θ
S1

d1(xi)θ
+

S2

d2(xi)θ

,

proving Proposition 2, where α = 1, β = θ in Principle 2 (Table 3.1), and qk = Sk in

Principle 4 (Table 3.3).
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In a particular case of α = 1, β = 1, and store sizes Sk are equal for all stores, the

Huff Model follows Principle 1 (3.15).

Moreover, the probability definition of the Huff Model is the optimal solution of

following optimization problem

minimize
pk(xi)

N∑
i=1

K∑
k=1

dk(xi)θpk(xi)2

Sk

subject to
K∑
k=1

pk(xi) = 1, i = 1, . . . , N,

pk(xi) ≥ 0, i = 1, . . . , N and k = 1, . . . , K,

where the floor sizes of the facilities Sk and origins of shopping centers ck are known.

3.6.2 Principles of Fuzzy c-Means

The Fuzzy c-Means Algorithm (FCM ) is explained in Section 3.2. Under this sec-

tion, we relate the principles of PDC with FCM by Proposition 3.

Proposition 3. FCM follows Principle 2 (3.32).

Proof. Consider the objective (3.3), center update procedure (3.4), and membership

probabilities (3.2) of FCM , when we substitute the constant m with α + 1, the ob-

jective function of FCM (3.3) becomes

ObjFCM =
N∑
i=1

K∑
k=1

pk(xi)α+1dk(xi)2, (3.48)

and the centers (3.4) are

ck =

N∑
i=1

pk(xi)α+1xi

N∑
i=1

pk(xi)α+1

, k = 1, ..., K, (3.49)
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where

pk(xi) =

(
K∑
l=1

(
dk(xi)
dl(xi)

)2/α
)−1

=
1

K∑
l=1

(
dk(xi)
dl(xi)

)2/α

=
1

dk(xi)2/α
K∑
l=1

1

dl(xi)2/α

=

1

dk(xi)2/α
K∑
l=1

1

dl(xi)2/α

. (3.50)

The objective function (3.48), centers (3.49), and membership probabilities (3.50) are

the same with (3.35), (3.36), and (3.33) respectively for β = 2. Thus, FCM follows

Principle 2 for α = m − 1 and β = 2. Note that the condition of m is greater than 1

ensures α to be positive.

3.6.3 Principles of K-Harmonic Means

In Section 3.3, the generalized K-Harmonic Means Algorithm (KHMθ) is described,

and the algorithm’s membership probability and weight definition are questioned. In

this section, we investigate the relation of the PDC principles with theKHMθ. From

the PDC perspective, the probability and weight definition of KHMθ are revised.

Proposition 4. KHMθ follows Principle 2 in (3.32).

Proof. Center update procedure of KHMθ (3.8) can be rearranged as

ck =

N∑
i=1

xi

dk(xi)θ+2

(
K∑
l=1

1

dl(xi)θ

)2

N∑
i=1

1

dk(xi)θ+2

(
K∑
l=1

1

dl(xi)θ

)2

=

N∑
i=1

dk(xi)θ−2

1

dk(xi)θ
K∑
l=1

1

dl(xi)θ

1

dk(xi)θ
K∑
l=1

1

dl(xi)θ

xi

N∑
i=1

dk(xi)θ−2

1

dk(xi)θ
K∑
l=1

1

dl(xi)θ

1

dk(xi)θ
K∑
l=1

1

dl(xi)θ

. (3.51)

When β = θ and α = 1, the term
1

dk(xi)θ

/
K∑
l=1

1

dl(xi)θ
in (3.51) equals to Principle
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2 probabilities, given in (3.33). Thus, (3.51) can be expressed as

ck =

N∑
i=1

dk(xi)θ−2pk(xi)2xi

N∑
i=1

dk(xi)θ−2pk(xi)2
, (3.52)

which is the center update procedure of Principle 2 in (3.36) for β = θ and α = 1.

If one wants to represent centers (3.51) in the form of (3.9), the meaningful expression

would be

pk(xi) =

1

dk(xi)θ
K∑
l=1

1

dk(xi)θ

and w(xi) = dk(xi)θ−2
1

dk(xi)θ
K∑
l=1

1

dl(xi)θ

. (3.53)

Moreover, in this particular case of β = θ and α = 1, and assuming that optimal

probabilities are given, the objective of Principle 2 (3.35) will be equal to the JDF of

the whole data set as

ObjPDF =
N∑
i=1

C(xi) =
N∑
i=1

HA(dk(xi)θ| k = 1, ..., K)

K
, (3.54)

which is equal to the objective function of KHMθ (3.7) over the constant K. There-

fore, optimizing the objective of KHMθ and PDC are the same.

3.6.4 Principles of Gravity p-Median Model

We explain the Gravity p-Median Model (GPM ) in Section 3.4. We note that proba-

bilities in (3.13) are not optimal solutions to the GPM problem in (3.14). That claim

will be proven in this section by Proposition 5. The link between PDC and GPM

will be shown. With this linkage, the optimization problem will be revised, and the

utility expression and attractiveness of facilities considered by Drezner et al. [13] will

be discussed.

Proposition 5. The probabilities in (3.13) are not optimal solutions of the Gravity

p-Median Problem in (3.14).
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Proof. For simplicity consider the case of K = 2, the optimization problem in (3.14)

is then

minimize
p1(xi), p2(xi)

N∑
i=1

w(xi)d1(xi)p1(xi) + w(xi)d2(xi)p2(xi)

subject to p1(xi) + p2(xi) = 1, i = 1, . . . , N,

p1(xi), p2(xi) ≥ 0, i = 1, . . . , N.

(3.55)

The Lagrangian of the problem (3.55) is

L(p1(xi), p2(xi), λi) =

(
N∑
i=1

w(xi)d1(xi)p1(xi) + w(xi)d2(xi)p2(xi)

)
− λi(p1(xi) + p2(xi)− 1)

∂L
∂p1(xi)

= w(xi)d1(xi)− λi = 0, i = 1, ..., N (3.56)

∂L
∂p2(xi)

= w(xi)d2(xi)− λi = 0, i = 1, ..., N (3.57)

∂L
∂λi

= p1(xi) + p2(xi)− 1 = 0, i = 1, ..., N

Equations (3.56-3.57) yield

d1(xi) = d2(xi), i = 1, ..., N, (3.58)

which gives alternative solutions for cluster centers that are lying on a line formed by

equal distances from data points. Thus, when N ≥ 3, even a solution may not exist.

In addition, the solution is independent of the probability definition in (3.13).

As stated in Section 3.5.3 , Teboulle [18] and Ben-Israel et al. [9] prove that the classi-

cal clustering problem, min{d1, d2, ..., dK}, is smoothed by the squares of probabili-

ties in objective. Since the Gravity p-Median Model relaxes the assumption that every

customer visits the facility closest to him/her of standard p-Median Model (PM ) ob-

jective, which is

ObjPM =
N∑
i=1

w(xi)min{d1, d2, ..., dK}, (3.59)
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the objective function of (3.59) should have been smoothed as follows

minimize
pk(xi)

N∑
i=1

K∑
k=1

w(xi)dk(xi)pk(xi)2

subject to
K∑
k=1

pk(xi) = 1, i = 1, . . . , N,

pk(xi) ≥ 0, i = 1, . . . , N and k = 1, . . . , K.

(3.60)

The revised GPM in (3.60) is related to the PDC principles as explained in the

following proposition

Proposition 6. When the utility function uk(dk(xi)) = dk(xi)−θ, and θ = 1, the

revised Gravity p-Median Problem in (3.60) follows Principle 1 in (3.15). Thus, the

probabilities in (3.13) are optimality conditions of the revised GPM in (3.60).

Proof. For simplicity consider the case of K = 2, the optimization problem in (3.60)

is then

minimize
p1(xi), p2(xi)

N∑
i=1

w(xi)d1(xi)p1(xi)2 + w(xi)d2(xi)p2(xi)2

subject to p1(xi) + p2(xi) = 1, i = 1, . . . , N,

p1(xi), p2(xi) ≥ 0, i = 1, . . . , N.

(3.61)

The Lagrangian of the problem (3.61) is

L(p1(xi), p2(xi), λi) =

(
N∑
i=1

w(xi)d1(xi)p1(xi)2 + w(xi)d2(xi)p2(xi)2
)

− λi(p1(xi) + p2(xi)− 1)

∂L
∂p1(xi)

= w(xi)d1(xi)p1(xi)− λi = 0, i = 1, ..., N (3.62)

∂L
∂p2(xi)

= w(xi)d2(xi)p2(xi)− λi = 0, i = 1, ..., N (3.63)

∂L
∂λi

= p1(xi) + p2(xi)− 1 = 0, i = 1, ..., N

Equations (3.62)-(3.63) yield

p1(xi)d1(xi) = p2(xi)d2(xi), i = 1, ..., N, (3.64)

which gives the Principle 1 in (3.15), and probabilities (3.13) for uk(dk(xi)) = dk(xi)−θ,

where θ = 1.
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A Note on the Utility Expression

In the original GPM , Drezner et al. [13] use the same objective function in (3.12),

independent from the utility definition of probabilities (3.13). Even the objective

(3.12) is smoothed correctly as in (3.60), this causes inconsistency between optimality

conditions of (3.60) and probabilities (3.13). We benefit from the PDC principles to

correct this inconsistency as in Proposition 7 and show that utility expression should

have been considered in the objective function.

Proposition 7. For uk(dk(xi)) = dk(xi)−θ,GPM follows Principle 2 of PDC (3.32),

and the original GPM (3.14) should be revised as follows

minimize
pk(xi)

N∑
i=1

K∑
k=1

w(xi)dk(xi)θpk(xi)2

subject to
K∑
k=1

pk(xi) = 1, i = 1, . . . , N,

pk(xi) ≥ 0, i = 1, . . . , N and k = 1, . . . , K,

(3.65)

since

pk(xi) =
uk(dk(xi))
K∑
l=1

ul(dl(xi))
=

1

dk(xi)θ
K∑
l=1

1

dl(xi)θ

, (3.66)

is the optimal solution of the optimization model in (3.65).

Proof. For simplicity consider the case of K = 2, the optimization problem in (3.65)

is then

minimize
p1(xi), p2(xi)

N∑
i=1

w(xi)d1(xi)θp1(xi)2 + w(xi)d2(xi)θp2(xi)2

subject to p1(xi) + p2(xi) = 1, i = 1, . . . , N,

p1(xi), p2(xi) ≥ 0, i = 1, . . . , N.

(3.67)

The Lagrangian of the problem (3.67) is

L(p1(xi), p2(xi), λi) =

(
N∑
i=1

w(xi)d1(xi)θp1(xi)2 + w(xi)d2(xi)θp2(xi)2
)

− λi(p1(xi) + p2(xi)− 1)
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∂L
∂p1(xi)

= w(xi)d1(xi)θp1(xi)− λi = 0, i = 1, ..., N (3.68)

∂L
∂p2(xi)

= w(xi)d2(xi)θp2(xi)− λi = 0, i = 1, ..., N (3.69)

∂L
∂λi

= p1(xi) + p2(xi)− 1 = 0, i = 1, ..., N

Equations (3.68)-(3.69) yield

p1(xi)d1(xi)θ = p2(xi)d2(xi)θ. i = 1, ..., N, (3.70)

Equality in (3.70) is the Principle 2 in (3.32), and probabilities in (3.66) are the mem-

berships of the Principle 2 in (3.33), where β = θ, and α = 1.

Similarly, for uk(dk(xi)) = e−θdk(xi), the original GPM (3.14) would be

minimize
pk(xi)

N∑
i=1

K∑
k=1

w(xi)e−θdk(xi)pk(xi)2

subject to
K∑
k=1

pk(xi) = 1, i = 1, . . . , N,

pk(xi) ≥ 0, i = 1, . . . , N and k = 1, . . . , K,

(3.71)

and optimality conditions of (3.71) follows Principle 3 in (3.37).

Attractiveness of Facilities

Drezner et al. [13] consider the attractiveness of facilities by multiplying utilities

of the membership probability in (3.13) with attractiveness value of the facilities as

follows

pk(xi) =
akuk(dk(xi))
K∑
l=1

alul(dl(xi))
, (3.72)

where ak is the attractiveness of facility k.

That is conceptually sensible as (3.72) means that the probability of a customer i

visits facility k is proportional to the attractiveness of the facility and inversely pro-

portional to its distance. However, the objective function in (3.12) is not adjusted for

attractiveness values, which results in a contradiction between attractiveness-included

probabilities (3.72) and the optimality conditions of the model.
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Attractiveness can be measured by multiplication of individual measures depends on

each retail facility such as store areas, brand attraction, concept of the store etc. [15].

These measures somehow estimate the number of customers that a store can draw

on. Therefore, attractiveness resembles cluster sizes in the clustering concept. This

guides us to Principle 4 in (3.42), where cluster sizes are considered in the PDC

method.

For uk(dk(xi)) = dk(xi)−θ, and attractiveness is ak, GPM probabilities in (3.72)

follows Principle 2 (3.32) and Principle 4 (3.42). Thus, the GPM objective (3.12)

will be revised as

ObjGPM =
N∑
i=1

K∑
k=1

w(xi)dk(xi)θpk(xi)2

ak
.

Similarly, when uk(dk(xi)) = e−θdk(xi), and attractiveness is ak, GPM probabilities

in (3.72) follows Principle 3 (3.37) and Principle 4 (3.42). Therefore, the GPM

objective (3.12) will be reconstructed as

ObjGPM =
N∑
i=1

K∑
k=1

w(xi)eθdk(xi)pk(xi)2

ak
.

3.7 Conclusion

Chapter 3 discusses well-known probabilistic approaches from different concepts; the

Huff Model from marketing, the Fuzzy c-Means and K-Harmonic Means Algorithms

from clustering and the Gravity p-Median Model from the location literature. We

show that principles defined in the Probabilistic D-Clustering approach explain the

other methods both conceptually and theoretically. We prove the Huff Model fol-

lows PDC principles, and the Fuzzy c-Means and K-Harmonic Means Algorithms

are special cases of PDC approach. We also prove that Gravity p-Median Model

has inconsistencies with its probability and objective function definitions. Using the

PDC principles, the model is revised. With this contribution, instead of restrict-

ing the GPM problem solutions as combinatorial, problem-based heuristics can be

developed to obtain solutions anywhere on the network.
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CHAPTER 4

PROBABILISTIC DISTANCE CLUSTERING FOR TWO-MODE

CLUSTERING PROBLEM

In a classical clustering setting, data are usually stored in a matrix X, which has two

dimensions or ways. Carroll and Arabie [20] define the term mode as a particular

class of entities. The distinct sets of entities indexed by the ways correspond to the

modes of a matrix. Let R and C be sets of row and column entities of a data set,

respectively. One-mode two-way data sets consist of R and C, which are identical

sets. Similarity, dissimilarity, or proximity matrices are examples of this type of data

sets. On the other hand, for two-mode two-way data sets,R and C are distinct. Thus,

elements xij of data sets are values of an indicator that relates entities of row and

column modes. An indicator can be representative of dependencies, trends, linkage,

preference, or frequency. Figure 4.1 summarizes the discussion on the one-mode and

two-mode data sets.

Two-Mode Clustering is a technique to cluster row and column entities of two-mode

two-way data sets to obtain compact partitions (submatrices). In other words, two-

mode clustering divides R and C into subsets {Sk | k = 1, . . . , K} and {Tl | l =

1, . . . , L}, respectively. The submatrices are formed by cartesian product of {Sk |
k = 1, . . . , K} and {Tl | l = 1, . . . , L}. With these submatrices, one can understand

the relationship between the first and second modes. The question of the Two-Mode

Clustering Problem is “Which group of row entities are related with which group

of column entities in what level?”.
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Figure 4.1: Representation of modes, (a) one-mode two-way data set, (b) two-mode

two-way data set

In the literature, the term biclustering is used interchangeably for two-mode clus-

tering. However, in biclustering problems, R refers to a set of entities, whereas C
represents a set of features. Biclustering, clusters R and C simultaneously to find

which groups of entities are explained by which group of features.

Two-Mode Clustering is used for problems from a variety of disciplines. One of them

is group cell technology in a manufacturing system, which aims to form production

cells with part-machine groupings [21]. With a Two-Mode Clustering method, an

industrial engineer can understand which group of parts are frequently processed by

which group of machines and design a manufacturing layout accordingly. In mar-

keting, brand switching problems are solved by Two-Mode Clustering [22]. Entries

of brand switching data sets are preference transitions of consumers from time t to

t+1. A brand switching data set solution reveals that which group of goods preferred

today is frequently replaced by which group of goods in the future and can be used

for marketing or advertisement purposes. One other marketing application is for mar-

ket segmentation to determine the subgroups of customers having specific subsets of

customer pain points [23]. Two-Mode Clustering is also a useful approach in social

network problems. Social proximity between two groups of people can be evaluated

by a Two-Mode Clustering method [24], [25]. According to Rathipriya et al. [26],
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on web usage data, by using a two-mode clustering approach, hidden browsing pat-

terns can be found and used to identify the web user-web page interactions to be used

for e-commerce. Another central usage area is text mining. Balbi [27] explains that

Two-Mode Clustering is very useful for text mining. Instead of single words, look-

ing at clusters of words to cluster documents is more content revealing and decreases

the information complication. Another application field is the university performance

study at which, by Two-Mode Clustering, performance is not measured for a single

activity metric, but it is estimated in a multi-dimensional framework manner [28].

Moreover, Two-Mode Clustering is applicable for biomedical data sets, where a set

of properties is linked to molecular units or patients [29]. It is also used for clinical

diagnostic purposes [30] to understand which group of symptoms are more likely to

be observed in which group of diseases [31].

There are three categories of Two-Mode Clustering: partitioning, nested clustering,

and overlapping clustering [31]. In partitioning, clusters are non-empty, disjoint,

and contain the complete set of modes (Figure 4.2a). In nested clustering, clusters

may intersect. However, in that case, the intersection must be in the form of subsets

in a hierarchical manner (Figure 4.2b). Lastly, overlapping clustering also allows

intersections, but those can be non-nested (Figure 4.2c). Among these categories, the

most studied one in the literature is the Two-Mode Partitioning (TMP ) problem. We

introduce the TMP problem and a review of solution methods in Section 4.1.

(a) (b) (c)

Figure 4.2: Categories of Two-Mode Clustering; (a) partitioning, (b) nested cluster-

ing, (c) overlapping clustering
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4.1 Two-Mode Partitioning Problem

Let X be a two-mode data set with N row and M column entities. The elements of

data set X are xij that relate the row and column modes. A row entity is a row vector

denoted by xri . Similarly, a column entity is represented by column vector xcj . In the

Two-Mode Partitioning problem, the row and column entities are assigned intoK and

L clusters, respectively. The assigned row entities to a row cluster k are stored in a

set, Sk. Correspondingly, Tl is a set of column entities assigned to a column cluster

l. Therefore, entities in Sk and Tl form KL partitions (submatrices) denoted by Vkl.

Submatrix centers vkl are calculated by taking averages of elements xij ∈ Vkl. A

representation of TMP for K = L = 2 is given in Figure 4.3.

V21

V11

V22

V12
S1

S2

T1 T2

(a) Partitions (submatrices)

v21

v11

v22

v12
S1

S2

T1 T2

(b) Partition (submatrix) centers

Figure 4.3: Two-Mode Partitioning (TMP ) problem for K = L = 2

The objective of TMP is to minimize the total deviation between assigned elements

of submatrices, xij ∈ Vkl, and submatrix centers vkl. In the literature, it is common

to use squared Euclidean distance for criterion as in (4.1).
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minimize
pk(xri ), ql(xcj), vkl

N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )ql(xcj)(xij − vkl)2

subject to
K∑
k=1

pk(xri ) = 1, i = 1, . . . , N,

L∑
l=1

ql(xcj) = 1, j = 1, . . . ,M,

N∑
i=1

pk(xri ) > 0, k = 1, . . . , K,

M∑
j=1

ql(xcj) > 0, l = 1, . . . , L,

pk(xri ), ql(xcj) ∈ {0, 1}, ∀i, j, k, l.

(4.1)

The decision variable pk(xri ) is binary and takes a value of 1, if a row entity xri is

assigned to a row cluster k. Similarly, ql(xcj) becomes 1, when a column xcj is assigned

to a column cluster l. The first two constraints with the fifth one of (4.1) ensure that

each row and column entity is assigned to exactly one cluster. The third and fourth

constraints are for avoiding empty clusters.

Brusco and Doreian [32] compute the number of solutions for the TMP as follows[
1

K!

K∑
k=0

(−1)k
(
K

k

)
(K − k)N

]
×
[

1

L!

L∑
l=0

(−1)l
(
L

l

)
(L− l)M

]
(4.2)

Even in the smallest scale, for N = M = 10 and K = L = 3, the approximate

number of possible solutions becomes 8.705× 107.

According to the overview paper of Mechelen et al. [31], the solution methodology

for Two-Mode Clustering (TMC) is divided into two main classes, which are indi-

rect and direct clustering. In indirect clustering, partitions are obtained by clustering

row and column objects successively with the classical one-mode clustering meth-

ods [33]. The direct clustering partitions the first and second modes simultaneously,

which will be our focus in this thesis. We categorize direct clustering methods for

the Two-Mode Partitioning problem as exact algorithms, problem-specific heuristics,

and meta-heuristics. An exact algorithm is proposed by Brusco and Doreian [32],

which deploys a branch and bound procedure. But it is only applicable for small data
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sets. The authors state that for a 19 × 19 data set and K = L = 3, the computation

takes for less than one minute, whereas for K = L = 6, it takes approximately three

hours. Vichi [34] modifies MacQueen’s K-Means Algorithm [5] for TMP problem.

This algorithm is called Two-Mode KL-Means Partitioning. Moreover, a Two-Mode

Fuzzy c-Means Algorithm is proposed by Rosmalen et al. [35], which is an extension

of the classical Fuzzy c-Means Algorithm [7] to two-mode data sets. This algorithm

converges to soft partitions. However, this algorithm is only used as an interstep to

Two-Mode KL-Means Partitioning, which is a hard partitioning algorithm. They

also deploy an adoption of the Fuzzy Steps method proposed by Heiser and Groenen

[36] that gradually lowers the fuzzy parameter in each step. Therefore, soft parti-

tioning solutions are not discussed. Meta-heuristic approaches are also implemented

to TMP problems. Trejos and Castillo perform simulated annealing [37] and tabu

search [38] heuristics. An integer-coded genetic algorithm is presented by Hansohm

[39]. In addition, Brusco and Doreian propose a real-coded genetic algorithm, which

uses partition centers as gene expression [40]. Rosmalen et al. [35] compare the

Two-Mode KL-Means Partitioning [34] , simulated annealing [37], tabu search [38],

and Two-Mode Fuzzy c-Means [35] algorithms with a simulation study. According

to this study, the multi start Two-Mode KL-Means Algorithm performs better com-

pared to other approaches. However, the authors note that when the data set is hard

to partition, i.e. when the submatrix structures in data set are not well-defined, multi

start Two-Mode Fuzzy c-Means algorithm has the best performance.

In this thesis, we aim to develop a soft clustering approach to solve TMC problems

in order to provide more information to its users. A soft partitioning solution by itself

can be used to interpret the relationship between modes. If it is needed the soft clus-

tering algorithm can be easily modified to obtain crisp partitions. In addition, it may

yield overlapping clusters, i.e., a row entity may be assigned to two row clusters with

equal membership probabilities. Thus, our proposed approach will be useful because

it will be a general solution method for both partitioning (Figure 4.2a) and overlap-

ping (Figure 4.2c) categories of Two-Mode Clustering problems. To develop such

a method, we follow the Probabilistic D-Clustering (PDC) introduced in Chapter 3.

Based on PDC principles, we present two novel algorithms in the following sections.
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4.2 Two-Mode Probabilistic Distance Clustering

In the soft TMC, each entity may belong to more than one cluster with some prob-

ability. Therefore, pk(xri ) ∈ [0, 1] is the membership probability of a row entity xri is

assigned to a row cluster k. Similarly, ql(xcj) ∈ [0, 1] is the membership probability

of a column entity xcj is assigned to a column cluster l. The center of a row cluster k,

and a column cluster l are denoted by vrk and vcl , respectively. In Figure 4.4a, repre-

sentation of centers are given for K = L = 2. An element xij belongs to a row entity

xri and column entity xcj as shown in Figure 4.4b. Position of xij in data set X depends

on positions of xri and xcj .

vr1

vr2

vc1 vc2

(a) Row and column cluster centers

xri

xcj

xij

(b) An element of X

vr1

vr2

vc1 vc2

xri

xcj

xij

q1(xcj) q2(xcj)

p1(xri )

p2(xri )

(c) Membership probabilities of enti-

ties to cluster centers

Figure 4.4: Soft Two-Mode Clustering (TMC) problem for K = L = 2
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Movements of xri and xcj are provided by membership probabilities pk(xri ) and ql(xcj)

as shown in Figure 4.4c. Membership probabilities depend on distances between

entities and cluster centers as it will be explained in Section 4.2.1. The distance

between a row entity xri and row cluster center vrk is denoted by dk(xri ). Likewise,

the distance between a column entity xcj and column cluster center vcl is indicated by

d̄l(xcj).

In Section 4.2.1, we explain how we adopt PDC principles for two-mode data sets. In

Sections 4.2.2-4.2.6, the derivations of probabilities and center update procedure are

introduced. We discuss the underlying optimization model and optimality conditions

in Section 4.2.7. Later, the steps of the algorithm are provided in Section 4.2.8.

4.2.1 Principles

In the soft Two-Mode Clustering problem (TMC) both row and column entities are

required to be clustered into K, and L many clusters, respectively. Thus, two princi-

ples for clustering row and column entities are proposed.

Principle 1. For each row entity xri ∈ X, and each row cluster k,

pk(xri )dk(xri ) = A(xri ), (4.3)

where A(xri ) = a constant, depending on xri .

Membership probability of row entity xri to row cluster k is higher when the row entity

is closer to the cluster center.

Note that problem properties imply

pk(xri ) = pk(xi1) = pk(xi2) = ... = pk(xiM), i = 1, .., N, (4.4)

which means that each element of a row entity, xij ∈ xri , has the same membership

probability of pk(xri ).

Principle 2. For each column entity xcj ∈ X, and each column cluster l,

ql(xcj)d̄l(xcj) = B(xcj), (4.5)

where B(xcj) = a constant, depending on xcj .
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Membership probability of column entity xcj to column cluster l is higher when the

column entity is closer to the cluster center.

Similarly, problem properties imply

ql(xcj) = ql(x1j) = ql(x2j) = ... = ql(xNj), j = 1, ..,M, (4.6)

which means that each element of a column entity, xij ∈ xcj , has the same membership

probability of ql(xcj).

Lemma 1. Assuming xri and xcj follow Principle 1 in (4.3) and Principle 2 in (4.5)

respectively, the following equality can be obtained

pk(xri )ql(xcj)dk(xri )d̄l(xcj) = A(xri )B(xcj), (4.7)

(4.4), and (4.6) with equality (4.7) imply

pk(xij)ql(xij)dk(xri )d̄l(xcj) = A(xri )B(xcj). (4.8)

By the equation (4.8), we derive a joint principle for each element xij ∈ X as follows.

Principle 3. Following the Lemma 1, for each xri , xcj ∈ X, and each Vkl partition, for

xij ∈ xri and xij ∈ xcj ,

Rkl(xij)Dkl(xri , x
c
j) = Z(xij), (4.9)

where Rkl(xij) = pk(xij)ql(xij) is the probability of an element xij is assigned to

partition Vkl, Dkl(xri , xcj) = dk(xri )d̄l(xcj) is the joint distance function of xri and xcj ,

and Z(xij) = A(xri )B(xcj) is a constant depending on xij .

Remark: The fact that
∑K

k=1 pk(xij) = 1, and
∑L

l=1 ql(xij) = 1 imply

K∑
k=1

L∑
l=1

pk(xij)ql(xij) =
K∑
k=1

L∑
l=1

Rkl(xij) = 1.

An Explicit Example

Assume N = M = 4 and K = L = 2, and we follow Principle 3 for an element x34

to the submatrix V12.
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Consider the membership of xr3 to row cluster 1, and membership of xc4 to column

cluster 2, then using (4.3) and (4.5), we write

p1(xr3)d1(xr3) = A(xr3) and q2(xc4)d̄2(xc4) = B(xc4). (4.10)

We know from (4.4) and (4.6) that

p1(xr3) = p1(x34) and q2(xc4) = q2(x34). (4.11)

Using (4.10) and (4.11)

p1(x34)d1(xr3) = A(xr3) and q2(x34)d̄2(xc4) = B(xc4).

Therefore,

p1(x34)q2(x34)d1(xr3)d̄2(xc4) = A(xr3)B(xc4).

4.2.2 Probabilities

Using the principles in Section 4.2.1, we find the membership probabilities of row

and column entities. Moreover, joint membership probabilities are obtained by the

problem properties explained in Section 4.2.1.

Row Membership Probabilities

From Principle 1, and the fact that probabilities pk(�) add to one, we get

Theorem 4. Let the row cluster centers {vr1, vr2, ..., vrK} be given, let xri be a row entity

of data set X, and let {dk(xri ) : k = 1, ..., K} be its distance from the given cluster

centers. Then the membership probabilities of xri are

pk(xri ) =

1

dk(xri )
K∑
s=1

1

ds(xri )

. (4.12)

Proof. Using (4.3) we write for s,k,

ps(xri ) =

(
pk(xri )dk(xri )

ds(xri )

)
.
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Since
K∑
s=1

ps(xri ) = 1,

pk(xri )dk(xri )
K∑
s=1

(
1

ds(xri )

)
= 1.

pk(xri ) =
1

dk(xri )
K∑
s=1

(
1

ds(xri )

) =

1

dk(xri )
K∑
s=1

1

ds(xri )

.

In particular, for K = 2,

p1(xri ) =

1

d1(xri )
1

d1(xri )
+

1

d2(xri )

, p2(xri ) =

1

d2(xri )
1

d1(xri )
+

1

d2(xri )

, (4.13)

and using (4.4) we may write

p1(xij) =

1

d1(xri )
1

d1(xri )
+

1

d2(xri )

, p2(xij) =

1

d2(xri )
1

d1(xri )
+

1

d2(xri )

.

Column Membership Probabilities

From Principle 2, and the fact that probabilities ql(�) add to one, we get

Theorem 5. Let the column cluster centers {vc1, vc2, ..., vcL} be given, let xcj be a column

entity of data set X, and let {d̄l(xcj) : l = 1, ..., L} be its distance from the given cluster

centers. Then the membership probabilities of xcj are

ql(xcj) =

1

d̄l(xcj)
L∑
t=1

d̄t(xcj)
. (4.14)

Proof. Using (4.5) we write for t,l,

qt(xcj) =

(
ql(xcj)d̄l(xcj)
d̄t(xcj)

)
.
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Since
L∑
t=1

qt(xcj) = 1,

ql(xcj)d̄l(xcj)
L∑
t=1

(
1

d̄t(xcj)

)
= 1.

ql(xcj) =
1

d̄l(xcj)
L∑
t=1

(
1

d̄t(xcj)

) =

1

d̄l(xcj)
L∑
t=1

1

d̄t(xcj)

.

In particular, for L = 2,

q1(xcj) =

1

d̄1(xcj)
1

d̄1(xcj)
+

1

d̄2(xcj)

, q2(xcj) =

1

d̄2(xcj)
1

d̄1(xcj)
+

1

d̄2(xcj)

, (4.15)

and using (4.6) we may write

q1(xij) =

1

d̄1(xcj)
1

d̄1(xcj)
+

1

d̄2(xcj)

, q2(xij) =

1

d̄2(xcj)
1

d̄1(xcj)
+

1

d̄2(xcj)

.

The Joint Membership Probabilities

From Principle 3, and the fact that probabilities Rkl(�) add to one, we get

Theorem 6. Let the row cluster centers {vr1, vr2, ..., vrK} and column cluster cen-

ters {vc1, vc2, ..., vcL} be given, xij be an element of data set X, and {Dkl(xri , xcj) =

dk(xri )d̄l(xcj) | k = 1, ..., K, l = 1, ..., L} be its joint distance from the given cluster

centers. Then the membership probabilities of xij are

Rkl(xij) =

1

Dkl(xri , xcj)
K∑
s=1

L∑
t=1

1

Dst(xri , xcj)

. (4.16)

Proof. Using (4.9) we write for s,t,k,l,

Rst(xij) =

(
Rkl(xij)Dkl(xri , xcj)

Dst(xri , xcj)

)
.
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Since
K∑
s=1

L∑
t=1

Rst(xij) = 1,

Rkl(xij)Dkl(xri , x
c
j)

K∑
s=1

L∑
t=1

(
1

Dst(xri , xcj)

)
= 1.

Rkl(xij) =
1

Dkl(xri , xcj)
K∑
s=1

L∑
t=1

(
1

Dst(xri , xcj)

) =

1

Dkl(xri , xcj)
K∑
s=1

L∑
t=1

1

Dst(xri , xcj)

.

Remark: From (4.12)-(4.16),

Rkl(xij) =

1

Dkl(xri , xcj)
K∑
s=1

L∑
t=1

1

Dst(xri , xcj)

=

1

dk(xri )d̄l(xcj)
K∑
s=1

L∑
t=1

1

ds(xri )d̄t(xcj)

=

1

dk(xri )d̄l(xcj)
K∑
s=1

1

ds(xri )

L∑
t=1

1

d̄t(xcj)

= pk(xij)ql(xij).

In particular, for K = L = 2,

R11(xij) =

1

D11(xri , xcj)
1

D11(xri , xcj)
+

1

D12(xri , xcj)
+

1

D21(xri , xcj)
+

1

D22(xri , xcj)

,

R12(xij) =

1

D12(xri , xcj)
1

D11(xri , xcj)
+

1

D12(xri , xcj)
+

1

D21(xri , xcj)
+

1

D22(xri , xcj)

,

R21(xij) =

1

D21(xri , xcj)
1

D11(xri , xcj)
+

1

D12(xri , xcj)
+

1

D21(xri , xcj)
+

1

D22(xri , xcj)

,

R22(xij) =

1

D22(xri , xcj)
1

D11(xri , xcj)
+

1

D12(xri , xcj)
+

1

D21(xri , xcj)
+

1

D22(xri , xcj)

.
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4.2.3 Extremal Principles

For simplicity consider the case of two row clusters and two column clusters, K =

L = 2, (the results are easily extended to any row and column clusters).

Let xri be a given row entity with distances d1(xri ), d2(xri ) to the row clusters. For

any given column clusters, the probabilities in (4.13) are the optimal solutions p1(xri ),

p2(xri ) of the following optimization problem

minimize
p1(xri ), p2(xri )

M∑
j=1

d1(xri )p1(xri )
2(d̄1(xcj)q1(xcj)

2 + d̄2(xcj)q2(xcj)
2)

+ d2(xri )p2(xri )
2(d̄1(xcj)q1(xcj)

2 + d̄2(xcj)q2(xcj)
2)

subject to p1(xri ) + p2(xri ) = 1,

p1(xri ), p2(xri )) ≥ 0,

which can also be written as

minimize
p1(xri ), p2(xri )

[d1(xri )p1(xri )
2 + d2(xri )p2(xri )

2]

(
M∑
j=1

2∑
l=1

d̄l(xcj)ql(xcj)
2

)
subject to p1(xri ) + p2(xri ) = 1,

p1(xri ), p2(xri ) ≥ 0.

(4.17)

Here the term under summation is a constant term and can be ignored because prob-

abilities and distances are all known.

The Lagrangian of the problem 4.17 is

L(p1(xri ), p2(xri ), λ) = d1(xri )p1(xri )
2 + d2(xri )p2(xri )

2 − λ(p1(xri ) + p2(xri )− 1),

and setting the partial derivatives with respect to p1(xri ), p2(xri ) equal to zero gives the

Principle 1,

p1(xri )d1(xri ) = p2(xri )d2(xri ).

Similarly, now consider the same case K = L = 2 for a column entity xcj with any

given row clusters, where probabilities and distances are known.

If we let xcj be a column entity with distances d̄1(xcj), d̄2(xcj) to the column cluster

centers, the probabilities in (4.15) are the optimal solutions q1(xcj), q2(xcj) of the fol-
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lowing optimization problem

minimize
q1(xcj), q2(xcj)

[d̄1(xcj)q1(xcj)
2 + d̄2(xcj)q2(xcj)

2]

(
N∑
i=1

2∑
k=1

dk(xri )pk(xri )
2

)
subject to q1(xcj) + q2(xcj) = 1,

q1(xcj), q2(xcj) ≥ 0.

(4.18)

Again, the term under summation is constant as row membership probabilities and

distances are known.

Thus, the Lagrangian of the problem 4.18 is

L(q1(xcj), q2(xcj), λ) = d̄1(xcj)q1(xcj)
2 + d̄2(xcj)q2(xcj)

2 − λ(q1(xcj) + q2(xcj) − 1),

and setting the partial derivatives with respect to q1(xcj), q2(xcj) equal to zero gives the

Principle 2,

q1(xcj)d̄1(xcj) = q2(xcj)d̄2(xcj).

Then the optimization problem of row entities of whole data set X = {xr1, xr2, . . . , xrN}
for any given column clusters is

minimize
p1(xri ), p2(xri )

N∑
i=1

[d1(xri )p1(xri )
2 + d2(xri )p2(xri )

2]

(
M∑
j=1

2∑
l=1

d̄l(xcj)ql(xcj)
2

)
subject to p1(xri ) + p2(xri ) = 1, i = 1, . . . , N,

p1(xri ), p2(xri ) ≥ 0, i = 1, . . . , N.

(4.19)

Following 4.18, the optimization problem of column entities of whole data set X =

{xc1, xc2, . . . , xcM} for any given row clusters is

minimize
q1(xcj), q2(xcj)

M∑
j=1

[d̄1(xcj)q1(xcj)
2 + d̄2(xcj)q2(xcj)

2]

(
N∑
i=1

2∑
k=1

dk(xri )pk(xri )
2

)
subject to q1(xcj) + q2(xcj) = 1 j = 1, . . . ,M,

q1(xcj), q2(xcj) ≥ 0, j = 1, . . . ,M.

(4.20)
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4.2.4 Optimization Problem

Following the problems (4.19) and (4.20), the optimization model of two-mode clus-

tering problem for K row and L column clusters is

minimize
pk(xri ), ql(xcj), v

r
k, v

c
l

N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )
2ql(xcj)

2dk(xri )d̄l(xcj)

subject to
K∑
k=1

pk(xri ) = 1, i = 1, . . . , N,

L∑
l=1

ql(xcj) = 1, j = 1, . . . ,M,

pk(xri ), ql(xcj) ≥ 0, ∀i, j, k, l.

(4.21)

4.2.5 Membership Problem

In the case the centers are given, the objective in (4.21) becomes quadratic function

of pk(xri ) and ql(xcj). This model can be solved for pk(xri ) by fixing ql(xcj), which will

be named as row membership problem, and for ql(xcj) by fixing pk(xri ), which is

named as column membership problem.

Row Membership Problem

Let centers vrk, k = 1, . . . , K, and vcl , l = 1, . . . , L are known and column probabili-

ties ql(xcj) are fixed, then the optimization problem in (4.21) is

minimize
pk(xri )

N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )
2ql(xcj)

2dk(xri )d̄l(xcj)

subject to
K∑
k=1

pk(xri ) = 1, i = 1, ..., N,

pk(xri ) ≥ 0, i = 1, ..., N, k = 1, ..., K,

(4.22)

which is a convex optimization problem of pk(xri ).

For simplicity we set K = L = 2. The problem in (4.22) can be decomposed for
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each xri , and becomes

minimize
p1(xri ), p2(xri )

M∑
j=1

p1(xri )
2q1(xcj)

2d1(xri )d̄1(xcj) + p1(xri )
2q2(xcj)

2d1(xri )d̄2(xcj)

+ p2(xri )
2q1(xcj)

2d2(xri )d̄1(xcj) + p2(xri )
2q2(xcj)

2d2(xri )d̄2(xcj)

subject to p1(xri ) + p2(xri ) = 1, i = 1, ..., N,

p1(xri ), p2(xri ) ≥ 0, i = 1, ..., N.

(4.23)

Lagrangian of the problem in (4.23) is

L(p1(xri ), p2(xri ), λi) =

( M∑
j=1

p1(xri )
2q1(xcj)

2d1(xri )d̄1(xcj)+p1(xri )
2q2(xcj)

2d1(xri )d̄2(xcj)+

p2(xri )
2q1(xcj)

2d2(xri )d̄1(xcj)+p2(xri )
2q2(xcj)

2d2(xri )d̄2(xcj)
)
−λi(p1(xri )+p2(xri )−1)

∂L
∂p1(xri )

= 2p1(xri )d1(xri )[q1(xcj)
2d̄1(xcj) + q2(xcj)

2d̄2(xcj)]− λi = 0 (4.24)

∂L
∂p2(xri )

= 2p2(xri )d2(xri )[q1(xcj)
2d̄1(xcj) + q2(xcj)

2d̄2(xcj)]− λi = 0 (4.25)

∂L
∂λi

= p1(xri ) + p2(xri )− 1 = 0

From (4.24) and (4.25), we get

p1(xri )d1(xri ) = p2(xri )d2(xri ), i = 1, ..., N,

which is Principle 1 in (4.3).

Column Membership Problem

Let centers vrk, k = 1, . . . , K, and vcl , l = 1, . . . , L are known and row probabilities

pk(xri ) are fixed, then the optimization problem in (4.21) is

minimize
ql(xcj)

N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )
2ql(xcj)

2dk(xri )d̄l(xcj)

subject to
L∑
l=1

ql(xcj) = 1, j = 1, ...,M,

ql(xcj) ≥ 0, j = 1, ...,M, l = 1, ..., L,

(4.26)
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which is a convex optimization problem of ql(xcj).

For simplicity we set K = L = 2. The problem in (4.26) can be decomposed for

each xcj , and becomes

minimize
q1(xcj), q2(xcj)

N∑
i=1

p1(xri )
2q1(xcj)

2d1(xri )d̄1(xcj) + p1(xri )
2q2(xcj)

2d1(xri )d̄2(xcj)

+ p2(xri )
2q1(xcj)

2d2(xri )d̄1(xcj) + p2(xri )
2q2(xcj)

2d2(xri )d̄2(xcj)

subject to q1(xcj) + q2(xcj) = 1, j = 1, ...,M,

q1(xcj), q2(xcj) ≥ 0, j = 1, ...,M.

(4.27)

Lagrangian of the problem in (4.27) is

L(q1(xcj), q2(xcj), µi) =

( N∑
i=1

p1(xri )
2q1(xcj)

2d1(xri )d̄1(xcj)+p1(xri )
2q2(xcj)

2d1(xri )d̄2(xcj)+

p2(xri )
2q1(xcj)

2d2(xri )d̄1(xcj)+p2(xri )
2q2(xcj)

2d2(xri )d̄2(xcj)
)
−µi(q1(xcj)+q2(xcj)−1)

∂L
∂q1(xcj)

= 2q1(xcj)d̄1(xcj)[p1(xri )
2d1(xri ) + p2(xri )

2d2(xri )]− µi = 0 (4.28)

∂L
∂q2(xcj)

= 2q2(xcj)d̄2(xcj)[p1(xri )
2d1(xri ) + p2(xri )

2d2(xri )]− µi = 0 (4.29)

∂L
∂µi

= q1(xcj) + q2(xcj)− 1 = 0

From (4.28) and (4.29), we get

q1(xcj)d̄1(xcj) = q2(xcj)d̄2(xcj), j = 1, ...,M,

which is Principle 2 in (4.5).

4.2.6 Center Problem

Given the row and column membership probabilities (pk(xri ) and ql(xcj)), row and

column cluster centers (vrk and vcl ) become decision variables of the optimization

problem in (4.21) as follows

minimize
vrk, v

c
l

N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )
2ql(xcj)

2d(xri , v
r
k)d̄(xcj, v

c
l ). (4.30)
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When we fix the column centers vcl , l = 1, . . . , L the problem in (4.30) can be solved

for row centers vrk, k = 1, . . . , K. Similarly, column centers can be found by fixing

the row centers as explained in the following parts.

Row Centers

Given the membership probabilities and fixed column centers (vcl ) we write the ob-

jective in (4.30) as a function of row centers vrk and get

f(vrk) =
N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )
2ql(xcj)

2d(xri , v
r
k)d̄(xcj, v

c
l ). (4.31)

Theorem 7. Let the distance function d(xri , vrk) be Euclidean,

d(xri , v
r
k) =‖xri − vrk ‖, i = 1, . . . , N, k = 1, . . . , K,

so that

f(vrk) =
N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )
2ql(xcj)

2 ‖xri − vrk ‖ d̄(xcj, v
c
l ), (4.32)

and let the probabilities be given for all xri and xcj . Also let column cluster centers vcl
be known.

Then, the minimizers of vrk are given by

vrk =

N∑
i=1

pk(xri )2

d(xri , vrk)
xri

N∑
i=1

pk(xri )2

d(xri , vrk)

, k = 1, . . . , K. (4.33)

Proof. The gradient of d(xri , vrk) =‖xri − vrk ‖ with respect to vrk is

∇vrk ‖xri − vrk ‖= −
xri − vrk
‖xri − vrk ‖

= − xri − vrk
d(xri , vrk)

.

Therefore, the gradient of (4.32) with respect to vrk is

∇vrkf(vrk) = −

[
N∑
i=1

M∑
j=1

L∑
l=1

pk(xri )
2ql(xcj)

2 xri − vrk
d(xri , vrk)

d̄(xcj, v
c
l )

]

= −
N∑
i=1

xri − vrk
d(xri , vrk)

pk(xri )
2

M∑
j=1

L∑
l=1

ql(xcj)
2d̄(xcj, v

c
l ), k = 1, . . . , K. (4.34)
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Let us call the term
M∑
j=1

L∑
l=1

ql(xcj)2d̄(xcj, vcl ) as w, then the equation (4.34) becomes

= −w
N∑
i=1

xri − vrk
d(xri , vrk)

pk(xri )
2.

By setting the gradient equal to zero, we get
N∑
i=1

pk(xri )2xri
d(xri , vrk)

=

[
N∑
i=1

pk(xri )2

d(xri , vrk)

]
vrk,

then

vrk =

N∑
i=1

pk(xri )2

d(xri , vrk)
xri

N∑
i=1

pk(xri )2

d(xri , vrk)

, k = 1, . . . , K,

proving (4.33).

Column Centers

Given the membership probabilities and fixed row centers (vrk) we write the objective

in (4.30) as a function of column centers vcl and get

f(vcl ) =
N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )
2ql(xcj)

2d(xri , v
r
k)d̄(xcj, v

c
l ). (4.35)

Theorem 8. Let the distance function d̄(xcj, vcl ) be Euclidean,

d̄(xcj, v
c
l ) =‖xcj − vcl ‖, l = 1, . . . , L, j = 1, . . . ,M,

so that

f(vcl ) =
N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )
2ql(xcj)

2d(xri , v
r
k) ‖xcj − vcl ‖, (4.36)

and let the probabilities be given for all xri and xcj . Also let row cluster centers vrk be

known.

Then, the minimizers of vcl are given by

vcl =

M∑
j=1

ql(xcj)2

d̄(xcj, vcl )
xcj

M∑
j=1

ql(xcj)2

d̄(xcj, vcl )

, l = 1, . . . , L. (4.37)
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Proof. The gradient of d̄(xcj, vcl ) =‖xcj − vcl ‖ with respect to vcl is

∇vcl ‖xcj − vcl ‖= −
xcj − vcl
‖xcj − vcl ‖

= −
xcj − vcl
d̄(xcj, vcl )

.

Therefore, the gradient of (4.36) with respect to vcl is

∇vcl f(vcl ) = −

[
N∑
i=1

M∑
j=1

K∑
k=1

pk(xri )
2ql(xcj)

2d(xri , v
r
k)

xcj − vcl
d̄(xcj, vcl )

]

= −
M∑
j=1

xcj − vcl
d̄(xcj, vcl )

ql(xcj)
2

N∑
i=1

K∑
k=1

pk(xri )
2d(xri , v

r
k), l = 1, . . . , L (4.38)

Let us call the term
N∑
i=1

K∑
k=1

pk(xri )2d(xri , vrk) as w, then the equation (4.38) becomes

= −w
M∑
j=1

xcj − vcl
d̄(xcj, vcl )

ql(xcj)
2.

By setting the gradient equal to zero, we get

M∑
j=1

ql(xcj)2xcj
d̄(xcj, vcl )

=

[
M∑
j=1

ql(xcj)2

d̄(xcj, vcl )

]
vcl ,

then

vcl =

M∑
j=1

ql(xcj)2

d̄(xcj, vcl )
xcj

M∑
j=1

ql(xcj)2

d̄(xcj, vcl )

, l = 1, . . . , L,

proving (4.37).

4.2.7 Discussion on the Optimality Conditions

Figure 4.5 illustrates position of an element xij , row and column cluster centers vrk,

vcl under optimal solution for K = L = 2. Distances of the xij from row and column

cluster centers are denoted by dk(xri ) and d̄l(xcj), respectively. Observe that distance

of an element xij to a row cluster center vrk is equal to distance of row instance xri
that contains the element xij from row cluster center vrk. Similarly, distance of an

element xij to a column cluster center vcl is equal to distance of column instance xcj
that contains the element xij from column cluster center vcl .
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Figure 4.5: Positions of an element xij , and row and column cluster centers vrk, vcl in

the optimal solution, where K = L = 2.

Following the Principle 3 in (4.9), in the optimal solution, the membership probability

of xij to partition Vkl is higher when the corresponding Dkl(xij) is smaller. For

K = L = 2, the following equalities should hold for the optimality,

R11(xij)D11(xri , x
c
j) = R12(xij)D12(xri , x

c
j)

= R21(xij)D21(xri , x
c
j) = R22(xij)D22(xri , x

c
j). (4.39)

We may rewrite the equation (4.39) in terms of dk(xri ) and d̄l(xcj) as

R11(xij)d1(xri )d̄1(xcj) = R12(xij)d1(xri )d̄2(xcj)

= R21(xij)d2(xri )d̄1(xcj) = R22(xij)d2(xri )d̄2(xcj). (4.40)

(4.40) implies the following

R11(xij)d1(xri ) = R21(xij)d2(xri ), (4.41a)

R11(xij)d̄1(xcj) = R12(xij)d̄2(xcj), (4.41b)

R12(xij)d1(xri ) = R22(xij)d2(xri ), (4.41c)

R21(xij)d̄1(xcj) = R22(xij)d̄2(xcj). (4.41d)

54



The equalities in (4.41a)-(4.41d) have an analogy with a fundamental concept of

physics. The torque or moment of a force is the propensity of the force to rotate

the body that is applied to. It is calculated by multiplying the force and its perpendic-

ular distance to a turning point. To illustrate, examine the Figure 4.6a, if we consider

R11(xij) and R21(xij) as forces applied to blue branches with lengths of d1(xri ) and

d2(xri ), then the torque applied by force R11(xij) is equal to R11(xij)d1(xri ) and its

sign is positive due to right hand side rule, and the torque applied by force R21(xij)

is equal to R21(xij)d2(xri ), which has negative sign. Thus, the net torque is equal to

R11(xij)d1(xri )−R21(xij)d2(xri ).

In the case that the net torque is 0, the position of xij is stabilized, which means

that there is no better place for xij to move. In terms of clustering, it means that we

need to find forces (Rkl(xij)s) that has net torque of 0 for all possible turning points

for the optimality. When we consider all possible turning points for xij as in Figure

4.6a-4.6d, making the net torque 0 leads us to the equalities in (4.41a)-(4.41d).

(a) (b) (c) (d)

Figure 4.6: Physical representation of optimality conditions, given the turning points

(orange dots) located on the (a) left, (b) top, (c) right, and (d) bottom.
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4.2.8 Algorithm

We propose an iterative algorithm for soft two-mode clustering by implementing the

ideas presented in the previous sections. The steps of the algorithm are as follows:

Algorithm 1: Proposed Algorithm 1

Step 1. Given the data set X, and ε > 0 initialize the cluster centers {vrk, | k =

1, ..., K} and {vcl , | l = 1, ..., L}

Step 2. Compute the distance of dk(xri ) and d̄l(xcj) for all xri , xcj ∈ X, respectively by

dk(xri ) =‖xri − vrk ‖, and d̄l(xcj) =‖xcj − vcl ‖

Step 3. Compute the membership probability of pk(xri ) and ql(xcj) for all xri , xcj ∈ X

respectively by

pk(xri ) =

1

dk(xri )
K∑
s=1

1

ds(xri )

, and ql(xcj) =

1

d̄l(xcj)
L∑
t=1

1

d̄t(xcj)

as in (4.12) and (4.14)

Step 4. Update the row cluster centers vrk, k = 1, . . . , K and column cluster centers

vcl , l = 1, . . . , L simultaneously by

vrk+ =

N∑
i=1

pk(xri )2

d(xri , vrk)
xri

N∑
i=1

pk(xri )2

d(xri , vrk)

, and vcl+ =

M∑
j=1

ql(xcj)2

d̄(xcj, vcl )
xcj

M∑
j=1

ql(xcj)2

d̄(xcj, vcl )

as in (4.33) and (4.37)

Step 5. If
K∑
k=1

‖vrk+ − vrk ‖ +
L∑
l=1

‖vcl+ − vcl ‖< ε, stop. Else, continue with Step 2.

Note that in Step 1, row and column entities are randomly assigned into K and L

clusters, respectively as an initilization. A row cluster center vrk is calculated by row

average of its assigned row entities. Similarly, a column cluster center vcl is computed

as the column mean of its column entities.
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4.3 Alternative Approach for Two-Mode Probabilistic Distance Clustering

In Algorithm 1 (See Section 4.2), the distance between a row entity xri and a row

cluster center vrk , and the distance between a column entity xcj and a column cluster

center vcl are considered in the objective of (4.21) as dk(xri )d̄l(xcj).

In this section, we change the representation of cluster centers and consider each

cluster center as a function of the submatrix elements, i.e., mean of the values of el-

ements in the partition. We define submatrix centers vkl for each partition Vkl and

consider minimizing total distance of the elements xij to their probabilistically as-

signed partition centers vkl, (see Section 4.3.1). Since the distance function measures

the difference between values of vkl and xij , the Euclidean distance function reduces

to the rectilinear norm. Note that we consider a soft assignment scheme such that

each element xij contributes to the center update procedure with a weight (member-

ship). Underlying principles are discussed in Section 4.3.1-4.3.5. Later, a gradient

descent algorithm is proposed in Section 4.3.6.

4.3.1 Optimization Problem

Considering the problem in (4.21), instead of dk(�)d̄l(�), now we use the distance

function as a function of the center vkl and the element xij as |xij − vkl|, satisfying

that xij ∈ xri and xcj . Thus, the problem in (4.21) becomes

minimize
pk(xri ), ql(xcj), vkl

N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )
2ql(xcj)

2|xij − vkl|

subject to
K∑
k=1

pk(xri ) = 1, i = 1, . . . , N,

L∑
l=1

ql(xcj) = 1, j = 1, . . . ,M,

pk(xri ), ql(xcj) ≥ 0, ∀i, j, k, l.

(4.42)

where pk(xri ) are row cluster membership probabilities, and ql(xcj) are column cluster

membership probabilities. Moreover, vkl are submatrix centers.

One can observe that the problem in (4.42) can be expressed in terms of xij by fol-
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lowing the problem properties (4.4) and (4.6) as follows

minimize
pk(xij), ql(xij), vkl

N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xij)
2ql(xij)

2|xij − vkl|

subject to
K∑
k=1

pk(xij) = 1, i = 1, . . . , N,

L∑
l=1

ql(xij) = 1, j = 1, . . . ,M,

pk(xij), ql(xij) ≥ 0, ∀i, j, k, l.

(4.43)

In (4.43), if the membership probabilities are given, the only decision variables will be

cluster centers vkl, k = 1, . . . , K and l = 1, . . . , L. Thus, the objective function of the

problem becomes the function of submatrix centers, and this problem is called center

problem. Similarly, if the centers are given, then the objective becomes a function

of probabilities, and the problem is called membership problem in the subsequent

sections.

4.3.2 Membership Problem

As mentioned above, in the case the centers are given, the objective of (4.42) becomes

a quadratic function of pk(xri ) and ql(xcj). This model can be solved for pk(xri ) by

fixing ql(xcj), which will be named as row membership problem, and for ql(xcj) by

fixing pk(xri ), which is named as column membership problem in the following

sections.
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Row Membership Problem

Let centers vkl, k = 1, . . . , K and, l = 1, . . . , L are known and column probabilities

ql(xcj) are fixed, then the optimization problem in (4.42) is

minimize
pk(xri )

N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )
2ql(xcj)

2|xij − vkl|

subject to
K∑
k=1

pk(xri ) = 1, i = 1, ..., N,

pk(xri ) ≥ 0, i = 1, ..., N, k = 1, ..., K,

(4.44)

which is a convex optimization problem of pk(xri ).

Again, for simplicity we set K = L = 2. Then Problem in (4.44) can be decomposed

for each xri , and it becomes

minimize
p1(xri ), p2(xri )

M∑
j=1

p1(xri )
2q1(xcj)

2|xij − v11|+ p1(xri )
2q2(xcj)

2|xij − v12|

+ p2(xri )
2q1(xcj)

2|xij − v21|+ p2(xri )
2q2(xcj)

2|xij − v22|

subject to p1(xri ) + p2(xri ) = 1, i = 1, . . . , N,

p1(xri ), p2(xri ) ≥ 0, i = 1, . . . , N.

(4.45)

Lagrangian of the problem (4.45) is

L(p1(xri ), p2(xri ), λi) =

( M∑
j=1

p1(xri )
2q1(xcj)

2|xij − v11|+ p1(xri )
2q2(xcj)

2|xij − v12|

+ p2(xri )
2q1(xcj)

2|xij − v21|+ p2(xri )
2q2(xcj)

2|xij − v22|
)
−λi(p1(xri ) + p2(xri )− 1)

∂L
∂p1(xri )

= 2p1(xri )
[ M∑
j=1

q1(xcj)
2|xij − v11|+ q2(xcj)

2|xij − v12|
]
− λi = 0 (4.46)

∂L
∂p2(xri )

= 2p2(xri )
[ M∑
j=1

q1(xcj)
2|xij − v21|+ q2(xcj)

2|xij − v22|
]
− λi = 0 (4.47)

∂L
∂λi

= p1(xri ) + p2(xri )− 1 = 0
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(4.46) and (4.47) yield

p1(xri )
[ M∑
j=1

q1(xcj)
2|xij − v11|+ q2(xcj)

2|xij − v12|
]

= p2(xri )
[ M∑
j=1

q1(xcj)
2|xij − v21|+ q2(xcj)

2|xij − v22|
]
, i = 1, . . . , N.

When we denote the term
[

M∑
j=1

q1(xcj)2|xij − v11|+ q2(xcj)2|xij − v12|
]

as δ1(xri ), and[
M∑
j=1

q1(xcj)2|xij − v21|+ q2(xcj)2|xij − v22|
]

as δ2(xri ), we get

p1(xri )δ1(xri ) = p2(xri )δ2(xri ), i = 1, . . . , N, (4.48)

which resembles the Principle 1 in (4.3).

Column Membership Problem

Similarly, if centers vkl, k = 1, . . . , K and l = 1, . . . , L are known and row probabil-

ities pk(xri ) are fixed, then the optimization problem in (4.42) is

minimize
ql(xcj)

N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )
2ql(xcj)

2|xij − vkl|

subject to
L∑
l=1

ql(xcj) = 1, j = 1, . . . ,M,

ql(xcj) ≥ 0, j = 1, . . . ,M, l = 1, . . . , L,

(4.49)

which is now a convex optimization problem of ql(xcj).

Again, we setK = L = 2, for simplicity. Then Problem in (4.49) can be decomposed

for each xcj , and it becomes

minimize
q1(xcj), q2(xcj)

N∑
i=1

p1(xri )
2q1(xcj)

2|xij − v11|+ p1(xri )
2q2(xcj)

2|xij − v12|

+ p2(xri )
2q1(xcj)

2|xij − v21|+ p2(xri )
2q2(xcj)

2|xij − v22|

subject to q1(xcj) + q2(xcj) = 1, j = 1, . . . ,M,

q1(xcj), q2(xcj) ≥ 0, j = 1, . . . ,M.

(4.50)

60



Lagrangian of problem (4.50) is

L(q1(xcj), q2(xcj), µj) =

( N∑
i=1

p1(xri )
2q1(xcj)

2|xij − v11|+ p1(xri )
2q2(xcj)

2|xij − v12|

+ p2(xri )
2q1(xcj)

2|xij − v21|+ p2(xri )
2q2(xcj)

2|xij − v22|
)
−µj(q1(xcj) + q2(xcj)− 1)

∂L
∂q1(xcj)

= 2q1(xcj)
[ N∑
i=1

p1(xri )
2|xij − v11|+ p2(xri )

2|xij − v21|
]
− µj = 0 (4.51)

∂L
∂q2(xcj)

= 2q2(xcj)
[ N∑
i=1

p1(xri )
2|xij − v12|+ p2(xri )

2|xij − v22|
]
− µj = 0 (4.52)

∂L
∂µj

= q1(xcj) + q2(xcj)− 1 = 0

(4.51) and (4.52) yield

q1(xcj)
[ N∑
i=1

p1(xri )
2|xij − v11|+ p2(xri )

2|xij − v21|
]

= q2(xcj)
[ N∑
i=1

p1(xri )
2|xij − v12|+ p2(xri )

2|xij − v22|
]
, j = 1, . . . ,M.

When we denote the terms
[

N∑
i=1

p1(xri )2|xij−v11|+p2(xri )2|xij−v21|
]

as δ̄1(xcj), and[
N∑
i=1

p1(xri )2|xij − v12|+ p2(xri )2|xij − v22|
]

as δ̄2(xcj), we get

q1(xcj)δ̄1(xcj) = q2(xcj)δ̄2(xcj), j = 1, . . . ,M, (4.53)

which resembles the Principle 2 in (4.5).

4.3.3 Underlying Principles

Consider the term δk(xri ) in (4.48), which is

δk(xri ) =
M∑
j=1

L∑
l=1

ql(xcj)
2|xij − vkl|, i = 1, . . . , N. (4.54)

From (4.54), one can observe that δk(xri ) depends on column membership probabili-

ties ql(xcj).
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Recall the problem property (4.6) in Section 4.2.1. It states that each element in

a column entity xij ∈ xcj should have the same column membership probability of

ql(xcj). Thus, we can rewrite (4.54) in terms of xij as follows

δk(xri ) =
M∑
j=1

L∑
l=1

ql(xij)
2|xij − vkl|, xij ∈ xcj, i = 1, . . . , N. (4.55)

When a row entity xri is assigned to a row cluster k with a probability of pk(xri ),

its elements xij ∈ xri are probabilistically assigned to submatrix centers {vkl : l =

1, ..., L} with the respective column membership probabilities of ql(xij). Thus, row

assignments are dependent to column assignments as in (4.54) or (4.55).

v21

v11

v22

v12
S1

S2

T1 T2

xi1 xi2 xi3 xi4xri

p2(xri )

p1(xri )

(a)

v11 v12
S1

T1 T2

xi1 xi2 xi3 xi4xri

q1(xc2) q2(xc2)

(b)

v11 v12
S1

T1 T2

xi1 xi2 xi3 xi4xri

(c)

Figure 4.7: (a) Representation of partitions when K = L = 2, (b) considering as-

signment of xri to row cluster k = 1, the soft assignments of row elements xij to

corresponding submatrix centers , (c) soft assignments of ∀xij ∈ xri
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To illustrate, consider Figure 4.7. Let K = L = 2, and any row entity xri can be

assigned to row clusters with its membership probabilities p1(xri ) and p2(xri ) (see

Figure 4.7a). We evaluate the membership of a row entity xri to the row cluster 1 and

consider the submatrix centers v11 and v12 as they belong to row cluster 1. Let row

entity xri has four elements {xi1, xi2, xi3, xi4}, which belong to column entities xc1, xc2,

xc3 and xc4, respectively. Thus, if xri is assigned to row cluster 1 with its membership

probability of p1(xri ), then; for example, the element xi2 gets assigned to v11 and v12

with its column membership probabilities q1(xc2) and q2(xc2) (See Figure 4.7b). This

will be considered for each element of xri as in Figure 4.7c.

Following the illustration in Figure 4.7, for each xri , i ∈ {1, . . . , N}, given a row

cluster k and L = 2, (4.54) will be

δk(xri ) =
M∑
j=1

q1(xcj)
2|xij − vk1|+ q2(xcj)

2|xij − vk2|,

which is equivalent to

δk(xri ) =
M∑
j=1

q1(xcj)(q1(xcj)|xij − vk1|) + q2(xcj)(q2(xcj)|xij − vk2|). (4.56)

The terms (q1(xcj)|xij − vk1|) and (q2(xcj)|xij − vk2|) represent the weighted distance

of element xij to the column clusters 1 and 2, respectively. Also, from the fact that

probabilities add up to one, (4.56) is the sum of convex combination of weighted

distances to column clusters. Therefore, we construct Principle 4 as follows

Principle 4. For each row entity xri ∈ X, and each row cluster k,

pk(xri )δk(xri ) = E(xri ), (4.57)

where E(xri ) = a constant, depending on xri .

Membership probability of a row entity xri to row cluster k is higher when the convex

combination of row entity elements’ weighted distances to column clusters δk(xri ) is

smaller.

A similar principle can be derived for column entities as follows.
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Principle 5. For each column entity xcj ∈ X, and each column cluster l,

ql(xcj)δ̄l(xcj) = F (xcj), (4.58)

where F (xcj) = a constant, depending on xcj .

Membership probability of a column entity xcj to column cluster l is higher when the

convex combination of column entity elements’ weighted distances to row clusters

δ̄l(xcj) is smaller.

4.3.4 Probabilities

From Principle 4 in (4.57), and the fact that probabilities pk(�) add to one, we get

Theorem 9. Let the submatrix centers {v11, v12, ..., vkl} be given, let xri be a row

entity of data set X, and {δk(xri ) : k = 1, ..., K} be its weighted expected distance

from the given cluster centers. Then the membership probabilities of xri are

pk(xri ) =

1

δk(xri )
K∑
s=1

1

δs(xri )

. (4.59)

Proof. Using (4.57) we write for s,k,

ps(xri ) =

(
pk(xri )δk(xri )

δs(xri )

)
.

Since
K∑
s=1

ps(xri ) = 1,

pk(xri )δk(xri )
K∑
s=1

(
1

δs(xri )

)
= 1.

pk(xri ) =
1

δk(xri )
K∑
s=1

(
1

δs(xri )

) =

1

δk(xri )
K∑
s=1

1

δs(xri )

.
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Similarly, column membership probabilities are

ql(xcj) =

1

δ̄l(xcj)
L∑
t=1

1

δ̄t(xcj)

. (4.60)

In particular, for K = L = 2,

p1(xri ) =

1

δ1(xri )
1

δ1(xri )
+

1

δ2(xri )

, p2(xri ) =

1

δ2(xri )
1

δ1(xri )
+

1

δ2(xri )

,

q1(xcj) =

1

δ̄1(xcj)
1

δ̄1(xcj)
+

1

δ̄2(xcj)

, q2(xcj) =

1

δ̄2(xcj)
1

δ̄1(xcj)
+

1

δ̄2(xcj)

.

4.3.5 Center Problem

Given the membership probabilities, the objective of optimization problem in (4.42)

is

f(vkl) =
N∑
i=1

M∑
j=1

K∑
k=1

L∑
l=1

pk(xri )
2ql(xcj)

2|xij − vkl|. (4.61)

Theorem 10. For (4.61), the minimizers of vkl are given by

vkl =

∑N
i=1

∑M
j=1

pk(xri )2ql(xcj)2

|xij − vkl|
xij

∑N
i=1

∑M
j=1

pk(xri )2ql(xcj)2

|xij − vkl|

, k = 1, . . . , K, l = 1, . . . , L. (4.62)

Proof. The gradient of |xij − vkl| with respect to vkl is

∇vkl|xij − vkl| = −
xij − vkl
|xij − vkl|

.

Thus, the gradient (4.61) with respect to vkl is

∇vklf(vkl) = −
N∑
i=1

M∑
j=1

pk(xri )
2ql(xcj)

2 xij − vkl
|xij − vkl|

, ∀k, l. (4.63)
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By setting the gradient equal to zero, we get
N∑
i=1

M∑
j=1

pk(xri )2ql(xcj)2

|xij − vkl|
xij =

(
N∑
i=1

M∑
j=1

pk(xri )2ql(xcj)2

|xij − vkl|

)
vkl,

then

vkl =

∑N
i=1

∑M
j=1

pk(xri )2ql(xcj)2

|xij − vkl|
xij

∑N
i=1

∑M
j=1

pk(xri )2ql(xcj)2

|xij − vkl|

,

proving (4.62).

4.3.6 Algorithm

We propose an iterative algorithm by following the ideas presented in the previous

sections. The steps of the algorithm are given as follows:

Algorithm 2: Proposed Algorithm 2

Step 1. Given the data set X, and ε > 0 initialize the membership probabilities pk(xri )

and ql(xcj) for all xri , xcj ∈ X.

Step 2. Update the the cluster centers vkl, k = 1, . . . , K, and l = 1, . . . , L by

v+kl =

∑N
i=1

∑M
j=1

pk(xri )2ql(xcj)2

|xij − vkl|
xij

∑N
i=1

∑M
j=1

pk(xri )2ql(xcj)2

|xij − vkl|

as in (4.62)

Step 3. Compute the membership probabilities of pk(xri ) and ql(xcj) for all xri , xcj ∈ X

respectively by

pk(xri ) =

1

δk(xri )
K∑
s=1

1

δs(xri )

, and ql(xcj) =

1

δ̄l(xcj)
L∑
t=1

1

δ̄t(xcj)

as in (4.59) and (4.60)

where

δk(xri ) =
∑M

j=1

∑L
l=1 ql(xcj)2|xij − v+kl|

δ̄l(xcj) =
∑N

i=1

∑K
k=1 pk(xri )2|xij − v+kl|

Step 4. If
K∑
k=1

L∑
l=1

‖v+kl − vkl ‖< ε, stop. Otherwise, continue with Step 2.
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Note that in Step 1, membership probabilities are determined randomly for each en-

tity and cluster centers are calculated as the average of elements assigned to a subma-

trix.
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CHAPTER 5

EXPERIMENTAL STUDY

5.1 Experiment Settings

As performances of clustering techniques are significantly affected by the features of

the data sets, we evaluate the performance of our proposed algorithms by generating

data sets with different properties.

We use a data generation method having a similar approach in [35]. To create a data

set XN×M , we need row and column memberships, PN×K and QM×L, and submatrix

centers, VK×L. Lastly, error perturbations to each element of the data set, EN×M , are

added. Thus, the data set is obtained by

X = PVQ′ + E. (5.1)

The data generation algorithm is given below.

Algorithm 3: Main Data Generation Algorithm

Input: N , M , K, L, σ

Step 1. Generate membership {pik ∈ P | pik = {0, 1}} for each row entity i to a row

cluster {k | k = 1, .., K} with discrete uniform distribution.

Step 2. Generate membership {qjl ∈ Q | qjl = {0, 1}} for each column entity j to a

column cluster {l | l = 1, .., L} with discrete uniform distribution.

Step 3. Generate a random value from interval {[t− 0.2, t+ 0.2] | t = 1, ..., K ×L}
for each submatrix center vkl ∈ V. Then, shuffle V.
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Step 4. Generate a perturbation value eij for each element xij , where eij ∈ E is

normally distributed with a mean of 0 and standard deviation σ.

Step 5. Compute X = PVQ′ + E.

Output: X, P, Q

The input parameters N , M , K, and L affect the problem’s difficulty in terms of

complexity (see (4.2)). We set the following levels to these parameters for the exper-

imental study:

• Small size data set: N = M = 20, medium size data set: N = M = 50, large

size data set: N = M = {80, 150}.

• K = L = 2, K = L = 3, K = L = 4, and K = L = 5.

The selection of submatrix centers affects the difficulty of the problem in terms of the

disjointness of partitions. The distance between submatrix centers is the first factor

that affects the separability of the submatrices. As it can be observed from Figure

5.1, we ensure a certain minimum distance between submatrix centers by selecting

them from the interval [t− 0.2, t+ 0.2] at Step 3. The orientation of submatrices also

affects the separability of the data set. Consider the data sets in Figure 5.2. Although

these data sets are formed from the same submatrices, they differ due to orientation.

The data set in Figure 5.2a has clear boundaries between its submatrices. On the other

hand, data sets in Figure 5.2b and Figure 5.2c have blurry boundaries between their

some submatrices, making them harder to analyze than the one in5.2a. To simulate

various orientations, we shuffle the submatrix centers in Step 3.

The size of the error perturbations also affects the clarity of submatrices, and it is

controlled by the term standard deviation σ in Step 4. To see the impact of parameter

σ, consider the data sets in Figure 5.3. For the lower level of σ, the submatrix distinc-

tion is more visible as in Figure 5.3a. When σ increases, the visibility of submatrices

diminishes. The submatrix structure is almost lost for a high level of σ, as in Figure

5.3c. Thus, as σ increases, the data set becomes harder to analyze.
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[ ] [ ] [ ] [ ]
1 2 3 4

(a) An example realization of submatrix centers for K = L = 2

1 2 3 4 5 6 7 8 9

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
(b) An example realization of submatrix centers for K = L = 3

Figure 5.1: Submatrix center locations, represented by red dots, determined by Step

3 for different number of partitions

(a) (b) (c)

Figure 5.2: Orientation of submatrices for a data set with N = M = 80 and K =

L = 3

(a) (b) (c)

Figure 5.3: Different error perturbation levels for a data set with N = M = 80 and

K = L = 3, (a) σ = 0.5, (b) σ = 2, (c) σ = 4
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Since center locations are selected from incompatible ranges for different partitioning

levels (see Figure 5.1), the effect of a σ level on the data separability alters with the

number of partitions. Consider the Figure 5.4, for K = L = 2, differentiation of

submatrices significantly decreases when σ = 2. On the other hand, for K = L = 5,

even with a larger level of σ = 4, the boundaries of submatrices are still clear (see

Figure 5.4i). To overcome this issue, we determine four levels of σ as low, moderate,

high moderate, and high from functions of K and L:

• Low error level: σ = 0.02KL, moderate error level: σ = 0.1KL, high moder-

ate error level: σ = 0.2KL, high error level: σ = 0.4KL.

(a) K = L = 2, σ = 0.5 (b) K = L = 2, σ = 2 (c) K = L = 2, σ = 4

(d) K = L = 3, σ = 0.5 (e) K = L = 3, σ = 2 (f) K = L = 3, σ = 4

(g) K = L = 5, σ = 0.5 (h) K = L = 5, σ = 2 (i) K = L = 5, σ = 4

Figure 5.4: The same σ levels for different K, L levels
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Data sets with different σ levels obtained from functions ofK, L can be seen in Figure

5.5.

(a) K = L = 2, σ = 0.4 (b) K = L = 2, σ = 0.8 (c) K = L = 2, σ = 1.6

(d) K = L = 3, σ = 0.9 (e) K = L = 3, σ = 1.8 (f) K = L = 3, σ = 3.6

(g) K = L = 5, σ = 2.5 (h) K = L = 5, σ = 5 (i) K = L = 5, σ = 10

Figure 5.5: Data sets with various σ levels depending on a function of K = L =

{2, 3, 5}

As a result, we have 4 levels of number of entities (N , M ), 4 levels of number of par-

titions (K, L), and 4 levels of error perturbation, making a total of 64 combinations.

We aim to test the proposed algorithms with various submatrix center generations.

Therefore, for each parameter combination, we generate 30 data sets. As a result, we

create a total of 1920 data sets for computational experiments.
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5.2 Performance Measures

Since we have two proposed algorithms, each with different objectives, we need ex-

ternal measures to evaluate and compare their performances. Rand index (RI) is

widely used in the literature to assess the performance of clustering approaches [41].

RI is calculated with the following ratio:

RI(Y, Z) =
|A ∩ C|+ |B ∩D|

|A ∩ C|+ |A ∩D|+ |B ∩ C|+ |B ∩D|
, (5.2)

where

A: Set of entity pairs belonging to same cluster in reference partitioning Y,

B: Set of entity pairs belonging to different cluster in reference partitioning Y,

C: Set of entity pairs belonging to same cluster in a partitioning Z,

D: Set of entity pairs belonging to different cluster in a partitioning Z.

In the original definition of RI , the reference partition Y and a partition to be eval-

uated Z are both hard assignments, where each data point is strictly assigned to a

cluster. In our study, we have strict reference partitions and soft partitions to be com-

pared. Therefore, we use Campello’s fuzzy rand index (FRI) given in [42]. FRI is

computed with revising the set definitions in (5.2) as follows:

A(i1, i2): For reference partitioning Y, the membership probability of an entity pair

(i1, i2) to the same cluster k:

max{min{Y(i1, k1),Y(i2, k1)},min{Y(i1, k2),Y(i2, k2)}, ...}

B(i1, i2): For reference partitioning Y, the membership probability of an entity pair

(i1, i2) to the different clusters:

max{min{Y(i1, k1),Y(i2, k2)},min{Y(i1, k2),Y(i2, k1)}, ...}, where k1 6= k2,

C(i1, i2): For a partitioning Z, the membership probability of an entity pair (i1, i2)

to the same cluster k:

max{min{Z(i1, k1),Z(i2, k1)},min{Z(i1, k2),Z(i2, k2)}, ...},

D(i1, i2): For a partitioning Z, the membership probability of an entity pair (i1, i2)

to the different clusters:
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max{min{Z(i1, k1),Z(i2, k2)},min{Z(i1, k2),Z(i2, k1)}, ...}, where k1 6= k2.

Then,

|A ∩ C| =
i2−1∑
i1=1

N∑
i2=2

min{A(i1, i2), C(i1, i2)} (5.3)

|A ∩D| =
i2−1∑
i1=1

N∑
i2=2

min{A(i1, i2), D(i1, i2)} (5.4)

|B ∩ C| =
i2−1∑
i1=1

N∑
i2=2

min{B(i1, i2), C(i1, i2)} (5.5)

|B ∩D| =
i2−1∑
i1=1

N∑
i2=2

min{B(i1, i2), D(i1, i2)} (5.6)

Fuzzy Rand Index (FRI) is measured by substituting (5.3)-(5.6) into (5.2).

Since we deal with two-mode partitioning, FRI is computed by joint probabilities

Rkl(xij), which estimates the probability of an element xij is assigned to submatrix

Vkl, (see Principle 3 in (4.9)). Reference partitioning Y is computed with original

row and column clusters, P and Q, as

Ykl(xij) = pikqjl, ∀i, j, k, l. (5.7)

Since FRI is computationally time consuming, we approximate FRI(Y,R) as

F̂RI(Y,R) = f(FRI(P,Pr))f(FRI(Q,Qr)), (5.8)

where Pr and Qr are resulting row and column clusters obtained from proposed algo-

rithms, and f(�) is a scaling function.

As it can be observed from Figure 5.6, F̂RI provides a good approximation of FRI .

For lower levels of σ, both indexes are high. As σ increases, indexe values decrease

since the data becomes harder to partition. In terms of CPU time, the average comput-

ing time of FRI is 0.1 and 53.1 seconds for 10×10 and 20×20 data sets, respectively.

On the other hand, F̂RI takes 0.001 and 0.002, respectively.
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(b) N =M = 20, K = L = 2

Figure 5.6: Behavior of FRI and F̂RI for several σ levels

Besides F̂RI , we also compute an approximated Rand Index R̂I with obtaining hard

assignments of row and column entities based on their soft assignments. The approx-

imation function is derived with a similar approach given in (5.8). We apply two

hardening methods to resulting clusters, Pr and Qr

Strict Hardening: Entities are strictly assigned to one cluster. Hard assignments are

obtained by assigning an entity to a cluster according to the highest membership

probability. The resulting Rand Index is denoted by R̂I
s
.

Overlapping Hardening: Overlapping clusters are allowed. Thus, hard assignments

are obtained by allowing each entity to be assigned to multiple clusters at which

its membership probability exceeds specific cut points, τ r = 1/K and τ c =

1/L for rows and columns, respectively. We denote the resulting Rand Index

by R̂I
o
.

Figure 5.7 represents hard assignments of entities by strict and overlapping hardening

for resulting clusters Pr and Qr of a given data set.

Lastly, CPU time for each algorithm is also considered as a performance measure.

Proposed algorithms are coded in MATLAB R2020b, and they are executed on an

Intel(R) Core(TM) i7-10510U 2.30 GHz processor with 16 GB RAM.
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(a) Original data set
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(b) Output of proposed algorithm
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(c) Strict hardening
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(d) Overlapping hardening

Figure 5.7: Resulting row and column partitions with strict and overlapping hardening

5.3 Experiment Results

In this section, performances of proposed algorithms are compared based on mea-

sures introduced in Section 5.2. The effect of initialization on the performance of the

algorithms is avoided by adopting a multi-start approach. Each algorithm is executed

100 times, and the best solution in terms of the objective function is reported as the

final result. Thus, the CPU time is calculated as a sum of 100 starts for each algorithm

in seconds. As stated before, 30 data sets are generated for each parameter combina-

tion. Average performances of Proposed Algorithm 1 (PA1) and Proposed Algorithm

2 (PA2) are reported in Table 5.1 and Table 5.2. The first column shows the size of

the data set, and the second column is for the number of row and column clusters.
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The third column represents the different levels of error perturbation. Each algorithm

is evaluated with F̂RI , R̂I
s
, R̂I

o
, and CPU in the last two columns.

From Table 5.1 and 5.2, it can be observed that PA1 outperforms PA2 on the aver-

age for most of the parameter combinations. We conduct one-sided paired t-test to

compare the performance of the algorithms statistically considering F̂RI values. For

each parameter combination, we compare the mean F̂RI values of PA1 and PA2,

denoted as FRI1 and FRI2, respectively. Assuming that mean difference is normally

distributed, the first hypothesis is as follows:

H0 :FRI1 − FRI2 ≤ 0

H1 :FRI1 − FRI2 > 0

Resulting p-values are given in Appendix A Table A.1 at fourth and ninth columns.

For 52 out of 64 parameter combinations, the null hypothesis is rejected as p-values

are less than the significance level of 0.05. That means PA1 outperforms PA2 sta-

tistically for those parameter combinations. We also construct a hypothesis for the

reverse direction as:

H0 :FRI2 − FRI1 ≤ 0

H1 :FRI2 − FRI1 > 0

Resulting p-values are given in Appendix A Table A.1 at fifth and tenth columns. For

8 out of 64 parameter combinations, PA2 outperforms PA1 statistically. All these

combinations have high σ level. There are 16 parameter combination with high level

of σ. In 5 of them, PA1 is statistically better than PA2 based on the first hypothesis

test. On the contrary, in 8 of them PA2 statistically outperforms PA1. For the other 3

combinations none of the algorithm outperforms each other. Remind that high σ level

refers to the datasets where intrinsic structure of submatrices is hardly identified.

Additionally, we conduct one-sided paired t-test on R̂I
s

values. Results are given in

Appendix A Table A.2. The results indicate that based on R̂I
s
, PA1 outperforms PA2

statistically in 58 out of 64 parameter combinations. For the remaining 6 parameter

combinations, it cannot be concluded that an algorithm beats the other one.
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Table 5.1: Performances of algorithms for small and medium size data sets

N = M K = L σ

PA1 PA2

F̂RI R̂I
s

R̂I
o

CPU F̂RI R̂I
s

R̂I
o

CPU

20

2

low 0.93 0.99 0.99 0.37 0.89 0.98 0.98 0.33

moderate 0.78 1.00 1.00 0.32 0.64 0.93 0.93 0.41

high moderate 0.63 0.98 0.98 1.94 0.54 0.89 0.89 0.40

high 0.53 0.83 0.83 4.23 0.50 0.72 0.72 0.28

3

low 0.93 1.00 1.00 1.25 0.62 0.85 0.74 0.65

moderate 0.73 0.97 0.94 2.62 0.53 0.77 0.66 0.79

high moderate 0.58 0.87 0.76 4.46 0.51 0.70 0.63 0.67

high 0.50 0.68 0.63 4.66 0.50 0.62 0.60 0.52

4

low 0.93 1.00 0.99 1.58 0.53 0.76 0.65 1.21

moderate 0.71 0.95 0.87 1.99 0.51 0.71 0.64 1.32

high moderate 0.56 0.82 0.69 5.07 0.50 0.68 0.63 1.26

high 0.50 0.66 0.62 1.51 0.50 0.62 0.60 0.85

5

low 0.93 0.99 0.99 2.64 0.51 0.70 0.64 2.11

moderate 0.67 0.90 0.79 2.39 0.51 0.67 0.63 2.23

high moderate 0.55 0.80 0.66 4.32 0.50 0.64 0.62 1.88

high 0.50 0.65 0.63 1.44 0.50 0.59 0.60 1.59

50

2

low 0.94 1.00 1.00 0.30 0.79 0.99 0.99 1.64

moderate 0.77 1.00 1.00 0.41 0.66 0.97 0.97 2.04

high moderate 0.64 1.00 1.00 1.81 0.54 0.90 0.90 1.86

high 0.51 0.89 0.88 7.24 0.50 0.76 0.76 1.18

3

low 0.94 1.00 1.00 0.62 0.58 0.84 0.73 3.19

moderate 0.73 1.00 0.95 2.04 0.52 0.79 0.67 4.77

high moderate 0.59 0.94 0.78 10.07 0.51 0.72 0.64 3.77

high 0.50 0.73 0.66 2.84 0.50 0.68 0.63 2.51

4

low 0.93 1.00 1.00 0.89 0.52 0.73 0.64 7.31

moderate 0.69 0.96 0.86 4.45 0.51 0.71 0.64 9.04

high moderate 0.54 0.81 0.66 11.61 0.50 0.67 0.63 4.99

high 0.50 0.69 0.63 1.82 0.50 0.63 0.61 4.39

5

low 0.93 1.00 1.00 1.48 0.51 0.70 0.63 13.10

moderate 0.68 0.96 0.82 9.86 0.50 0.66 0.62 12.54

high moderate 0.52 0.74 0.65 30.64 0.50 0.63 0.62 7.92

high 0.50 0.66 0.64 1.87 0.50 0.60 0.61 6.69

79



Table 5.2: Performances of algorithms for large size data sets

N = M K = L σ

PA1 PA2

F̂RI R̂I
s

R̂I
o

CPU F̂RI R̂I
s

R̂I
o

CPU

80

2

low 0.94 1.00 1.00 0.51 0.78 1.00 1.00 8.24

moderate 0.78 1.00 1.00 0.73 0.64 0.95 0.95 10.62

high moderate 0.62 1.00 1.00 4.94 0.56 0.94 0.94 10.88

high 0.50 0.79 0.79 8.49 0.50 0.84 0.84 6.03

3

low 0.93 1.00 1.00 1.33 0.58 0.83 0.72 17.18

moderate 0.74 1.00 0.97 3.71 0.51 0.78 0.67 21.07

high moderate 0.57 0.92 0.76 25.97 0.51 0.76 0.66 22.74

high 0.50 0.74 0.66 2.97 0.50 0.70 0.64 13.23

4

low 0.93 1.00 1.00 2.44 0.52 0.77 0.64 61.83

moderate 0.73 1.00 0.94 10.00 0.51 0.72 0.63 60.63

high moderate 0.53 0.78 0.65 48.38 0.50 0.67 0.63 45.16

high 0.50 0.69 0.63 4.48 0.50 0.63 0.62 30.94

5

low 0.93 1.00 0.99 3.38 0.51 0.69 0.63 91.04

moderate 0.69 0.97 0.86 19.65 0.50 0.67 0.62 84.22

high moderate 0.52 0.73 0.64 116.45 0.50 0.63 0.63 55.60

high 0.50 0.66 0.63 4.15 0.50 0.61 0.62 43.09

150

2

low 0.94 1.00 1.00 4.64 0.78 1.00 1.00 63.42

moderate 0.78 1.00 1.00 3.07 0.64 0.96 0.96 88.54

high moderate 0.64 1.00 1.00 11.01 0.55 0.93 0.93 77.25

high 0.50 0.78 0.77 49.26 0.50 0.83 0.83 48.52

3

low 0.93 1.00 1.00 5.83 0.60 0.87 0.72 121.93

moderate 0.74 1.00 0.96 17.47 0.52 0.79 0.67 191.69

high moderate 0.58 0.92 0.78 41.00 0.51 0.75 0.66 135.61

high 0.50 0.74 0.66 10.42 0.50 0.72 0.66 85.91

4

low 0.93 1.00 1.00 9.14 0.51 0.75 0.63 308.65

moderate 0.72 0.99 0.93 40.77 0.51 0.72 0.64 314.32

high moderate 0.53 0.78 0.66 84.51 0.50 0.69 0.63 241.40

high 0.50 0.71 0.65 12.93 0.50 0.66 0.62 136.73

5

low 0.93 1.00 1.00 12.03 0.51 0.71 0.62 497.55

moderate 0.65 0.95 0.80 119.54 0.50 0.66 0.63 376.35

high moderate 0.51 0.70 0.64 177.31 0.50 0.64 0.63 235.01

high 0.50 0.66 0.64 13.08 0.50 0.62 0.62 207.20
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The performances of the algorithms under different parameter levels are summarized

in Table 5.3. The number of entities does not alter the performance of the algorithms.

However, as the number of entities increases, CPU times increase as well. As the

number of clusters gets larger, the performance measures (F̂RI , R̂I
s
, R̂I

o
) slightly

decreases for both algorithms. On the other hand, CPU times increase. The size of

the error directly affects the difficulty of data sets. Performances of the algorithms

decrease significantly for the larger size of error perturbations.

Interestingly, CPU times for the high error perturbed data sets are lower than the error

level of moderate or high moderate. A high level of σ distorts the submatrix structures

in the data sets, and so the submatrices get almost undefined (recall Figure 5.5). Thus,

algorithms tend to assign equal probability to each entity for these data sets, and then

the algorithms converge fast.

Table 5.3: Average performances for each level of each design feature

Design Feature Level
PA1 PA2

F̂RI R̂I
s

R̂I
o

CPU F̂RI R̂I
s

R̂I
o

CPU

Number of entities (N = M )

20 0.68 0.88 0.84 2.55 0.55 0.74 0.70 1.03

50 0.68 0.90 0.84 5.50 0.54 0.75 0.71 5.43

80 0.68 0.89 0.85 16.10 0.54 0.76 0.71 36.41

150 0.68 0.89 0.84 38.25 0.54 0.77 0.72 195.63

Number of clusters (K = L)

2 0.71 0.95 0.95 6.20 0.63 0.91 0.91 20.10

3 0.69 0.91 0.84 8.58 0.53 0.76 0.67 39.14

4 0.67 0.86 0.80 15.10 0.51 0.70 0.63 76.88

5 0.66 0.84 0.77 32.51 0.50 0.65 0.62 102.38

Size of error (σ)

low 0.93 1.00 1.00 3.03 0.61 0.82 0.75 74.96

moderate 0.72 0.98 0.92 14.94 0.55 0.78 0.72 73.79

high moderate 0.57 0.86 0.77 36.22 0.51 0.74 0.70 52.90

high 0.50 0.72 0.68 8.21 0.50 0.68 0.66 36.85

Since PA1 mostly outperforms PA2, we conduct our additional experiments for PA1

and name it “Two-Mode Probabilistic Distance Clustering” (TMPDC) in the rest of

the analysis.
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5.4 Computational Results on Noisy Data Sets

We aim to evaluate the performance of TMPDC on noise-added data sets. Thus,

we generate data sets X with a low level of error by our main generation algorithm

explained in Section 5.1. Then, some noisy row and column entities are included to

these data sets such that the new entities may belong to more than one cluster with

some proportion. The steps of this data generation algorithm are given below.

Algorithm 4: Noise Included Data Generation Algorithm

Input: X, P, Q, N , M , α

Step 1. Compute the row cluster centers {vrk | k = 1, . . . , K} by averaging the row

entities assigned to cluster k, {xri | pik = 1}.

Step 2. Generate αN many row entities by computing convex combinations of row

cluster centers as

xri =
K∑
k=1

λkvrk, i = 1, . . . , αN , where
K∑
k=1

λk = 1 and each λk is selected

randomly.

Step 3. Update X by adding new row entities to the original data set, and update P

by adding λk values for each new row entity. Then set N = N + αN .

Step 4. Compute the column cluster centers {vcl | l = 1, . . . , L} by averaging the

column entities assigned to cluster l, {xcj | qjl = 1}.

Step 5. Generate αM many column entities by computing convex combinations of

column cluster centers as

xcj =
L∑
l=1

λlvcl , j = 1, . . . , αM , where
L∑
l=1

λl = 1 and each λl is selected

randomly.

Step 6. Update X by adding new column entities to the original data set, and update

Q by adding λl values for each new column entity. Then set M = M + αM .

Step 7. Shuffle row and columns of the data set X.

Output: Updated X, P, Q, N , M
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Figure 5.8 represents our noise added data set generation technique. Assume that we

want to create a data set as N = M = 50 with moderate level of noise (α = 0.2) and

K = L = 2. A 40× 40 data set X is generated with first using main data generation

algorithm (Algorithm 3) as in Figure 5.8a. Then 10 row and column entities are

generated as explained in Steps 2-6 of Algorithm 4.

(a) N =M = 40 (b) N =M = 50

Figure 5.8: Representation of noise added data generation method, (a) the initial data

set, (b) noise added data

The parameter α controls the complexity of the data set in terms of noise. We select

three levels for α, which are

• Low noise α = 0.1, moderate noise α = 0.2, high noise α = 0.4.

The effect of different α levels on the submatrices can be observed in Figure 5.9. As

α increases, distortion of the submatrix structures becomes more severe.

The number of entities and the number of clusters control the difficulty in terms of

computational time, and the following levels are used for experiments

• Small size data set: N = M = 20, medium size data set: N = M = 50, large

size data set: N = M = {80, 150}.

• K = L = 2, K = L = 3, K = L = 4, and K = L = 5.

For computational experiments, we have 4 levels of number of entities (N ,M ), 4
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levels of number of clusters (K,L), and 3 levels of noise that makes total of 48 com-

binations. For each parameter combination, 30 data sets are generated. As a result,

1440 data sets are created for this experimental study.

(a) K = L = 2, α = 0.1 (b) K = L = 2, α = 0.2 (c) K = L = 2, α = 0.4

(d) K = L = 3, α = 0.1 (e) K = L = 3, α = 0.2 (f) K = L = 3, α = 0.4

(g) K = L = 4, α = 0.1 (h) K = L = 4, α = 0.2 (i) K = L = 4, α = 0.4

Figure 5.9: Representation of low, moderate, and high α levels for different K, L

levels

5.4.1 Results

Average performances out of 30 trials for each parameter combination are reported

in Table 5.4-Table 5.5. Note that in this setting, membership probabilities P and

Q have some probabilistic assignments (λk and λl values of noise entities are in-
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cluded as probabilities). Thus, while computing R̂I
s

index, we use strict hardening

for reference clusters (P and Q). Similarly, to estimate R̂I
o
, overlapping hardening is

employed for reference clusters.

Table 5.4: Performance of TMPDC on the noise added small and medium size data

sets

N = M K = L α F̂RI R̂I
s

R̂I
o

CPU

20

2

0.1 0.84 1.00 1.00 0.24

0.2 0.77 0.98 0.98 0.34

0.4 0.65 0.91 0.91 0.65

3

0.1 0.82 0.94 0.87 0.55

0.2 0.73 0.89 0.79 0.68

0.4 0.59 0.74 0.66 1.03

4

0.1 0.79 0.89 0.81 0.79

0.2 0.71 0.85 0.73 0.85

0.4 0.56 0.68 0.58 0.73

5

0.1 0.79 0.88 0.80 0.88

0.2 0.68 0.79 0.69 0.63

0.4 0.55 0.65 0.56 0.50

50

2

0.1 0.84 1.00 1.00 0.43

0.2 0.77 1.00 1.00 0.67

0.4 0.67 0.94 0.94 1.68

3

0.1 0.83 0.95 0.88 0.96

0.2 0.75 0.89 0.78 2.29

0.4 0.60 0.76 0.65 4.53

4

0.1 0.82 0.93 0.83 2.71

0.2 0.71 0.86 0.73 4.10

0.4 0.56 0.77 0.59 4.03

5

0.1 0.79 0.93 0.81 2.38

0.2 0.68 0.87 0.70 2.99

0.4 0.56 0.80 0.58 3.05
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Table 5.5: Performance of TMPDC on the noise added large size data sets

N = M K = L α F̂RI R̂I
s

R̂I
o

CPU

80

2

0.1 0.84 1.00 1.00 0.77

0.2 0.77 1.00 1.00 1.27

0.4 0.66 0.97 0.97 3.46

3

0.1 0.83 0.94 0.86 2.03

0.2 0.75 0.89 0.78 3.73

0.4 0.59 0.74 0.65 8.28

4

0.1 0.83 0.93 0.84 6.63

0.2 0.72 0.86 0.73 17.54

0.4 0.56 0.78 0.59 18.11

5

0.1 0.81 0.93 0.81 12.76

0.2 0.66 0.87 0.67 14.54

0.4 0.53 0.79 0.56 19.69

150

2

0.1 0.84 1.00 1.00 3.67

0.2 0.77 1.00 1.00 5.82

0.4 0.67 1.00 1.00 15.04

3

0.1 0.83 0.95 0.87 6.97

0.2 0.75 0.90 0.78 12.74

0.4 0.60 0.75 0.66 51.68

4

0.1 0.84 0.94 0.84 21.86

0.2 0.72 0.87 0.73 53.97

0.4 0.55 0.77 0.59 76.21

5

0.1 0.83 0.93 0.83 68.28

0.2 0.66 0.86 0.67 137.36

0.4 0.53 0.78 0.56 113.54

The overall performance of TMPDC for each parameter combination is summarized

in Table 5.6. As the size of the data set increases, the performance measures do not al-

ter, but CPU times increase. Increasing the number of partitions results in decreased

F̂RI and R̂I values and increased CPU times. Compared to computational exper-

86



iments (see Table 5.3), the number of partitions affects the algorithm performance

slightly more under noise. Consider the case of K = 2, and a noise entity is added to

row entities, then it will be obtained by a convex combination of two cluster centers.

On the other hand, if it is added to a data set with K = 5, the noise entity will be

obtained from a convex combination of five cluster centers. That is why the effect

of the number of partitions on the performance is more significant. As the level of

noise increases, submatrix structures of data sets get disperse. Thus, the performance

of the algorithm decreases for a larger level of α. In this case, data becomes harder

to analyze; therefore, convergence takes more time. Thus, CPU times are higher for

greater levels of α.

Table 5.6: Average performance of TMPDC for each level of each design feature

Design Feature Level F̂RI R̂I
s

R̂I
o

CPU

Number of entities (N = M )

20 0.71 0.85 0.78 0.66

50 0.72 0.89 0.79 2.48

80 0.71 0.89 0.79 9.07

150 0.72 0.90 0.79 47.26

Number of clusters (K = L)

2 0.76 0.98 0.98 2.84

3 0.72 0.86 0.77 7.96

4 0.70 0.84 0.72 17.29

5 0.67 0.84 0.69 31.38

Level of noise (α)

0.1 0.82 0.95 0.88 8.24

0.2 0.72 0.90 0.80 16.22

0.4 0.59 0.80 0.69 20.14

5.5 Computational Results on Binary Data Sets

Up to this section, we discuss data sets with continuous elements. Data sets with

binary elements are input for various problems in the literature, such as social network

analysis or part-machine grouping technology. Therefore, in this section, we generate

binary data sets and evaluate the performance of TMPDC.
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The steps of the binary data set generation algorithm are given below.

Algorithm 5: Binary Data Set Generation Algorithm

Input: N , M , K, L, β

Step 1. Generate membership {pik ∈ P | pik = {0, 1}} for each row entity i to a row

cluster {k | k = 1, .., K} with discrete uniform distribution.

Step 2. Generate membership {qjl ∈ Q | qjl = {0, 1}} for each column entity j to a

column cluster {l | l = 1, .., L} with discrete uniform distribution.

Step 3. Compute X = PQ′.

Step 4. Count the number of ones in X, denoted by C.

Step 5. Change βC many ones of X to zero, and βC many zeros to one, where β ∈
[0, 1].

Output: X, P, Q

The parameter β controls the percentage of ones (zeros) converted to zeros (ones).

When β = 0, it means that the zero and one blocks (submatrices) are clearly defined

in the data set. When β increases, the data set gets more challenging to analyze. We

set three levels for β, which are

• Low β = 0.1, moderate β = 0.2, high β = 0.3.

Figure 5.10 shows the effect of different β levels on the submatrices. As β increases,

submatrix structures get uncertain.

Due to the nature of binary data sets, as number of partitions increases the sizes of the

submatrices consisting of ones decreases. Therefore, we use larger data sets for these

experiments. The following levels are set for binary data experiments:

• N = M = 50, N = M = 80, N = M = 150, and N = M = 300 .

88



• K = L = 2, K = L = 3, K = L = 4, and K = L = 5.

In the total of 48 different parameter combinations are tried for data set generations

(4 levels for the number of entities (N , M ), 4 levels for the number of clusters (K,

L), and 3 levels of β). For each combination, 30 different data sets are generated.

(a) K = L = 2, β = 0.1 (b) K = L = 2, β = 0.2 (c) K = L = 2, β = 0.3

(d) K = L = 3, β = 0.1 (e) K = L = 3, β = 0.2 (f) K = L = 3, β = 0.3

(g) K = L = 4, β = 0.1 (h) K = L = 4, β = 0.2 (i) K = L = 4, β = 0.3

Figure 5.10: Representation of β levels for different K, L levels

5.5.1 Results

The performance of TMPDC on the binary data sets is given in Table 5.7- Table

5.8. The overall performance of TMPDC is summarized in Table 5.9. It can be

observed that as the size of the data set increases, the CPU time increases as well. In
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contrast to previous experiments, the number of clusters affects the performance of

the algorithm. This is due to the nature of binary data sets. As the number of row and

column clusters increases, the sparsity in data becomes severe, which directly affects

the performance. ForK = L = 2, even with the largest level of β, TMPDC performs

well in terms of R̂I
s
. On the contrary, the results are not promising for K = L = 5.

As expected, for the higher levels of β the performance of TMPDC deteriorates.

Table 5.7: Performance of TMPDC on the binary data sets for N = M = {50, 80}

N = M K = L β F̂RI R̂I
s

R̂I
o

CPU

50

2

0.1 0.70 1.00 1.00 0.75

0.2 0.56 1.00 1.00 3.42

0.3 0.50 0.99 0.99 0.51

3

0.1 0.70 1.00 0.98 1.45

0.2 0.51 0.79 0.69 9.54

0.3 0.50 0.79 0.69 0.90

4

0.1 0.67 0.97 0.92 5.06

0.2 0.50 0.67 0.63 5.26

0.3 0.50 0.71 0.63 0.99

5

0.1 0.59 0.88 0.73 6.52

0.2 0.50 0.62 0.62 2.38

0.3 0.50 0.66 0.61 1.12

80

2

0.1 0.70 1.00 1.00 0.80

0.2 0.55 1.00 1.00 6.56

0.3 0.50 1.00 1.00 0.92

3

0.1 0.70 1.00 1.00 2.69

0.2 0.50 0.79 0.68 21.65

0.3 0.50 0.78 0.69 1.50

4

0.1 0.68 0.99 0.95 18.93

0.2 0.50 0.67 0.62 6.08

0.3 0.50 0.70 0.61 2.34

5

0.1 0.54 0.79 0.68 13.69

0.2 0.50 0.64 0.61 4.12

0.3 0.50 0.68 0.60 2.47
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Table 5.8: Performance of TMPDC on the binary data sets forN = M = {150, 300}

N = M K = L β F̂RI R̂I
s

R̂I
o

CPU

150

2

0.1 0.70 1.00 1.00 3.85

0.2 0.55 1.00 1.00 34.51

0.3 0.50 1.00 1.00 4.24

3

0.1 0.70 1.00 1.00 11.59

0.2 0.50 0.77 0.68 33.10

0.3 0.50 0.80 0.68 6.25

4

0.1 0.62 0.91 0.84 73.47

0.2 0.50 0.70 0.62 13.72

0.3 0.50 0.74 0.60 6.76

5

0.1 0.51 0.65 0.61 34.69

0.2 0.50 0.66 0.59 11.93

0.3 0.50 0.71 0.59 7.88

300

2

0.1 0.70 1.00 1.00 14.50

0.2 0.56 1.00 1.00 110.38

0.3 0.50 1.00 1.00 14.99

3

0.1 0.70 1.00 1.00 37.43

0.2 0.50 0.77 0.68 69.13

0.3 0.50 0.80 0.68 21.86

4

0.1 0.55 0.75 0.71 220.34

0.2 0.50 0.68 0.61 40.82

0.3 0.50 0.76 0.60 22.62

5

0.1 0.50 0.62 0.59 74.47

0.2 0.50 0.67 0.57 38.26

0.3 0.50 0.75 0.56 25.24
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Table 5.9: Average performance of TMPDC for binary data sets

Design Feature Level F̂RI R̂I
s

R̂I
o

CPU

Number of entities (N = M )

50 0.56 0.84 0.79 3.16

80 0.56 0.84 0.79 6.81

150 0.55 0.83 0.77 20.17

300 0.54 0.82 0.75 57.50

Number of clusters (K = L)

2 0.59 1.00 1.00 16.28

3 0.57 0.86 0.79 18.09

4 0.54 0.77 0.70 34.70

5 0.51 0.69 0.61 18.56

Level of β

0.1 0.64 0.91 0.88 32.51

0.2 0.51 0.78 0.73 25.68

0.3 0.50 0.81 0.72 7.54
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Figure 5.11 presents a large size data set studied in this section and its solution given

by TMPDC.

(a) Original data

(b) TMPDC solution

Figure 5.11: TMPDC solution for an N = M = 150 data set for K = L = 4
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5.6 How Can a Decision-Maker Benefit From Two-Mode Clustering with Soft

Assignments?

In this section, we explain how to use the results of TMPDC. In this section, we

explain how to use the results of TMPDC. We examined two examples: a synthetic

data set with continuous elements and a binary data set that stores part-machine inci-

dences.

Patient-Symptom Data Set

Assume that a decision-maker has 14 patients who suffer from two distinct diseases.

However, we do not know which patients have which of these diseases. Patients are

examined for 15 symptoms that are associated with severity values between 0 and 7.

Given the patient i and symptom j the severity value of xij takes 0 if the patient does

not show this symptom. When the xij is 7, that means the patient i exhibits symptom

j intensely. The resulting data set is given in Figure 5.12, where darker colors refer

to higher severity.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Symptoms

1

2

3

4

5

6

7

8

9

10

11

12

13

14

P
a
ti
e
n
ts

Patient Data Set

0.9569

1.565

4.524

2.841

4.49

0.4606

1.299

0.02688

0.8245

2.416

1.99

0.2135

4.232

0.5809

2.822

0.3599

4.166

3.292

0.4883

0.7207

3.762

1.578

4.681

4

1.543

3.094

1.444

4.587

4.029

3.396

1.665

1.685

3.698

0.1439

4.529

0.4723

3.019

0.2725

4.447

3.522

0.68

0.9419

4.026

2.556

3.657

3.408

2.411

3.062

2.377

3.63

3.241

3.814

3.854

3.177

2.562

2.519

3.293

0.4809

1.777

3.261

0.4093

1.313

0.8745

0.8621

2.766

2.272

1.578

4.681

4

1.543

3.094

1.444

4.587

4.029

3.396

1.665

1.685

3.698

2.801

3.401

3.26

2.628

3.054

2.61

3.39

3.044

3.558

3.595

3.123

2.786

2.728

3.192

2.067

4.169

3.704

1.977

3.078

1.911

4.108

3.635

4.326

4.372

3.287

2.114

2.102

3.496

0.05302

1.507

2.817

0.9159

0.1902

0.7953

1.213

2.38

4.472

1.944

1.299

0.7783

3.328

0.5796

3.817

0.6426

1.092

4.307

0.5786

1.381

2.782

0.1728

0.4209

1.064

0

2.315

4.665

4.523

1.848

0.7399

0.8703

3.335

0.8364

3.827

1.264

0.6522

4.32

0.9264

1.731

4.684

2.998

1.249

1.369

0.5788

0.3093

2.575

2.153

0.5117

1.831

3.099

1.345

0.6812

1.109

1.277

2.676

4.513

2.253

5.207

5.416

5.209

5.392

4.721

5.817

5.762

4.838

4.89

6.404

5.323

5.395

6.111

6.002

5.554

5.01

5.947

6.159

4.838

4.89

5.121

4.903

5.367

5.139

5.296

4.797

5.981

5.103

6.342

6.162

5.495

5.485

5.412

5.729

4.812

6.151

5.548

5.893

5.666

5.328

4.978

5.306

5.247

5.794

4.94

5.786

5.034

0

1

2

3

4

5

6

Figure 5.12: Severity values of symptoms for each patient.

In such an environment, the decision-maker wants to answer the following questions:
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• Which groups of patients have the same disease?

• Which two groups of symptoms are intensely observed in which group of pa-

tients? Can we identify the symptoms that can best distinguish these two dis-

eases?

• Are there any patients that can have both diseases?

• Are there any symptoms that are not explanatory for these two diseases?

To summarize, the decision-maker aims to discover two groups of patients and two

groups of symptoms simultaneously such that one of the symptom groups is fiercely

perceived in one of the patient groups and weakly in the other one. Therefore, this is

a two-mode clustering problem with N = 14, M = 15, K = L = 2.

We use TMPDC as a tool to solve the problem. The solution of TMPDC is hardened

to get the partitions. The hard assignments are obtained by concerning probability

thresholds denoted as τ r and τ c for row and column membership probabilities. In

other words, we make the hard assignments by following rules:

• The patient i is a member of patient group k, if its membership probability

pk(xri ) is greater than the threshold τ r.

• The symptom j is a member of symptom group l, if its membership probability

ql(xcj) is greater than the threshold τ c.

If the decision-maker desires to see the assignments of all patients and symptoms,

then τ r = τ c = 0.5. From a clustering perspective, partitions are to be obtained

such that they cover the whole set of modes. According to these threshold values, the

results are given in Figure 5.13. In panel (a), the indexes of rows and columns refer to

the patient and symptom numbers, respectively. Panel (b) is to show soft assignment

probabilities. The membership probabilities are provided next to the entity number in

the rows and columns for each patient and symptom.
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Figure 5.13: (a) TMPDC solution of the patient data set for τ r = τ c = 0.5, where

partitions are represented by black lines, (b) membership probabilities of patients,

and symptoms

The resulting partitions in Figure 5.13a indicate:

• The first group of patients are S1 = {7, 2, 9, 10, 8, 3, 14, 11, 5} and suffer from

disease 1, whereas the second group of patients S2 = {13, 6, 1, 12, 4} suffer
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from the disease 2.

• The first and second group of symptoms are T1 = {14, 10, 15, 1, 12, 6} and

T2 = {8, 5, 4, 13, 11, 2, 9, 3, 7}, respectively.

• Assigned elements of Sk and Tl form submatrices Vkl. For instance, V11 con-

tains elements xij such that i ∈ S1 and j ∈ T1.

• The submatrix centers vkl measures the strengths of the relationship between

patient and symptom groups and is calculated as the mean of submatrices.

Thus, for the first disease, symptom group T1 has a low value of severity

v11 = 1.434, while the symptom group T2 has a high value of severity as

v12 = 4.229. Similarly, patients of second disease show symptoms T1 intensely

v21 = 5.190, whereas they show symptoms T2 weakly v22 = 1.458.

Additional information can be provided based on membership probabilities. In Fig-

ure 5.13b, the membership degrees of patients and symptoms to their groups are pro-

vided. The elements are the joint membership probabilities Rkl(xij) = pk(xri )ql(xcj).

Therefore, the following information can be derived:

• Patient 7 is a member of S1 with the highest probability. The membership

probability of patient 5 is too low that we can conclude she can have both

diseases.

• Membership probabilities of all patients in S2 are significantly high. Thus, it

can be referenced that S2 is a more reliable group relative to S1.

• Symptom 14 is the most crucial symptom of classifying disease 2, and symp-

toms 3 and 7 are critical for diagnosing disease 1.

• Symptoms 5 and 8 can be observed in both diseases relative to other symptoms.

Thus, they may not be explanatory enough.

The decision-maker may be more risk-averse and want to have a more convenient

solution, which can be achieved by changing threshold values. For instance, she can

regard the assignments of patients having probability higher than 0.8 and symptoms

having probability higher than 0.7. The resulting assignments for τ r = 0.8 and τ c =
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0.7 are given in Figure 5.14. In panel (a), the light gray regions refer to the undecided

patients or symptoms. The corresponding probabilities are shown by blue regions in

panel (b).
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Figure 5.14: (a) TMPDC solution of the patient data set for τ r = 0.8 and τ c = 0.7,

(b) membership probabilities of patients and symptoms
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According to new partitions in 5.14a:

• Patients 14, 11 and 5 are excluded from the analysis. Thus, the first group of

patients S1 = {7, 2, 9, 10, 8, 3} and the second one is S2 = {13, 6, 1, 12, 4}.

• Symptom 8 is not explanatory for new threshold. Therefore, the first symptom

set is T1 = {14, 10, 15, 1, 12, 6} and the second one is T2 = {5, 4, 13, 11, 2, 9, 3, 7}.

• The submatrix centers vkl is updated as v11 = 0.891, v12 = 4.786, v21 = 5.190

and v22 = 1.301. This update is important to evaluate new patients. For in-

stance, with the first partition (Figure 5.13a), we expect a patient who suf-

fers from disease 1 will have symptom severity of around 1.434 over symptom

group T1. With new assignments (Figure 5.14a), we expect them to have a

severity value of approximately 0.891 for the same symptom group.

Note that even more aggressive thresholds can be considered, i.e., τ r = τ c = 0.9.

However, this will decrease the sample size of patients and symptoms. Therefore, it

is the expert’s decision between analysis level and sample size.

Part-Machine Grouping Technology

Group technology (GT ) is a method used to obtain a cellular manufacturing layout,

which is an alternative for a job shop layout. It aims to enhance production efficiency

by grouping machines and parts according to process requirements [43]. The grouped

parts that have similar processing needs are called part families. The machines that

can process specific part families are named machine cells. In a cellular layout, ma-

chines of a cell are located closer to each other to decrease the cost and traffic intensity

of production logistic activities of a manufacturing environment.

The input of the GT problem is a part-machine incidence matrix that represents the

machine requirements of parts. If a part i is processed by a machine j, the element

xij of the incidence matrix takes a value of one; otherwise, it takes zero.

As an example, we study a part-machine incidence matrix of Chan and Milner [44]

given in Figure 5.15. In this example, there are 10 parts as first mode entities and
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15 machines as second mode entities (N = 10, M = 15). The number of machine

cells and part families is three (K = L = 3). In Figure 5.15, the blue cells represent

ones, and the light blue cells show the zeros. This instance was solved by an exact

algorithm in [32] for the hard partitioning case. Thus, we have an exact solution to

compare our results.
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Figure 5.15: Part-machine incidence matrix

We employ TMPDC to find embedded submatrices of the part-machine incidence

matrix. Figure 5.16b shows resulting assignment probabilities Pr and Qr. In this

figure, the first values on axes are the highest assignment probabilities of entities to

their respective clusters. The second value shows the entity number. For example,

entity 2 is assigned to the first row cluster with a membership probability of 0.53.

Note that we sorted the assigned entities according to membership probabilities in

descending order for each cluster. The elements of the matrix in Figure 5.16b are

joint membership probabilities of part-machine pairs to their assigned submatrices

(Rkl(xij) = pk(xri )ql(xcj)). For instance, part 5 and machine 3 pair is assigned to sub-

matrix V11 with a probability of 1. Thus, darker cells imply higher joint membership

probabilities.

According to memberships, part families and machine cells are obtained with strict

hardening, as in Figure 5.16c. The resulting submatrices are precisely compatible

with the exact hard partitioning solution in Figure 5.16a. According to the solution,

the part families S1, S2, and S3 are mainly processed in machine cells T3, T2, and T1,

respectively. Therefore, it is reasonable to locate machines in a specific cell closer to
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each other.

The resulting membership probabilities can also be interpreted with overlapping hard-

ening as in Figure 5.16d. In this case, an entity may belong to more than one cluster.

We use cut points τ r = 1/K for row entities and τ c = 1/L for column entities.

The resulting assignments indicate that machine 6 belongs to both machine cells T1

and T2. Thus, it will be a logical action to locate cells T1 and T2 closer. Moreover,

machine 6 should be located in T1 at a position that is closest to cell T2. It can be

concluded that unlike the well-known methods for GT , our soft assignment approach

can determine not only the machine cells but also the relative locations of cells.
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(a) Exact hard partitioning solution in [32]
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(c) Solution under strict hardening
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(d) Solution under overlapping hardening

Figure 5.16: Results for GT example
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CHAPTER 6

CONCLUSION

In this thesis, we study soft clustering techniques. Our focus is Probabilistic Distance

Clustering (PDC), a soft clustering algorithm for one-mode data sets. The study is

constructed with two phases.

In the first phase, PDC principles are examined for one-mode problems by showing

that these principles explain soft approaches in different literature concepts. From

marketing, we studied the Huff Model, which finds given the facility locations, vis-

iting probabilities of customers. In clustering perspective, it aims to find soft as-

signments to given cluster centers. We show that the probability definition of the

Huff Model follows PDC principles. Then, we discuss two famous soft clustering

approaches K-Harmonic Means Clustering (KHM ) and Fuzzy c-Means Algorithm

(FCM ). We prove that PDC is a generalization of KHM and FCM . Moreover,

we criticize the probability definition of KHM . Later, we discuss Gravity p-Median

Problem (GPM ) from location literature and prove that the objective of GPM is not

compatible with its probability representation. We revise the objective function of

GPM . This is an essential contribution to literature. By revised GPM , the assump-

tion that hub locations will be on nodes of the network can be relaxed. Thus, we pave

the way for the development of problem-specific algorithms.

In the second phase, we focus on Two-Mode Clustering (TMC) problems with soft

assignments. To the best of our knowledge, the only soft assignment approach de-

veloped for TMC is Two-Mode Fuzzy C-Means. However, the algorithm’s perfor-

mance with soft memberships has not been discussed in the literature. It is used as

an interstep to a well-known hard assignment algorithm, the Two-Mode KL-Means

Algorithm. We derive the theoretical properties of TMC with soft assignments and
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define two-mode PDC principles. By following those principles, we construct opti-

mization models for the problem and propose two novel algorithms. Since this is a

pioneer study for soft TMC, evaluating the performance of proposed approaches is a

new research question. A full factorial design is adopted for the experimental study.

Since the performance of clustering techniques is affected by the properties of data

sets, we use generated data sets for our experiments. We modify Rosmalen’s data

generation method [35] and develop three two-mode data generation algorithms. We

believe that these algorithms will be a benchmark in TMC literature for both hard and

soft assignment approaches. We include various properties to our synthetic data sets

by setting levels to data generation parameters. Moreover, external performance mea-

sures are proposed to test soft TMC algorithms. An extensive experimental study is

conducted with a total of 4800 generated data sets. Lastly, we show that a soft TMC

approach yields extra valuable information to decision-makers relative to hard TMC

methods by employing our proposed algorithm, TMPDC, on two two-mode cluster-

ing problems.

To sum up, this study answers the following research questions

• Why PDC principles are so explanatory?

• How can a soft two-mode clustering problem be formulated and solved?

• Why it is needed to a soft assignment approach for two-mode clustering prob-

lems? How can a decision-maker benefit from a soft TMC solution?

As a future research direction, it will be a worthwhile effort to develop new solu-

tion methods for the revised Gravity p-Median problem. Moreover, for soft TMC,

generalized versions of TMPDC can be obtained by using exponents of membership

probabilities and distance as in one-mode PDC principles. This effort will yield ad-

ditional parameters to the problem. The effect of new parameters on solution quality

can be examined.

.
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APPENDIX A

STATISTICAL COMPARISON OF ALGORITHMS

Table A.1: One-sided pair t-test for F̂RI

N = M K = L σ

p-value
N = M K = L σ

p-value

FRI1-FRI2 FRI2-FRI1 FRI1-FRI2 FRI2-FRI1

20

2

low 0.06 0.94

80

2

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.00 1.00 high 0.01 0.99

3

low 0.00 1.00

3

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.12 0.88 high 1.00 0.00

4

low 0.00 1.00

4

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.04 0.96 high 1.00 0.00

5

low 0.00 1.00

5

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.13 0.87 high 1.00 0.00

50

2

low 0.00 1.00

150

2

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.00 1.00 high 0.02 0.98

3

low 0.00 1.00

3

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.18 0.82 high 1.00 0.00

4

low 0.00 1.00

4

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 1.00 0.00 high 1.00 0.00

5

low 0.00 1.00

5

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 1.00 0.00 high 1.00 0.00
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Table A.2: One-sided pair t-test for R̂I
s

N = M K = L σ

p-value
N = M K = L σ

p-value

RIs1-RIs2 RIs2-RIs1 RIs1-RIs2 RIs2-RIs1

20

2

low 0.22 0.78

80

2

low 0.10 0.90

moderate 0.00 1.00 moderate 0.01 0.99

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.00 1.00 high 0.89 0.11

3

low 0.00 1.00

3

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.00 1.00 high 0.00 1.00

4

low 0.00 1.00

4

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.00 1.00 high 0.00 1.00

5

low 0.00 1.00

5

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.00 1.00 high 0.00 1.00

50

2

low 0.05 0.95

150

2

low 0.05 0.95

moderate 0.02 0.98 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.00 1.00 high 0.88 0.12

3

low 0.00 1.00

3

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.00 1.00 high 0.06 0.94

4

low 0.00 1.00

4

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.00 1.00 high 0.00 1.00

5

low 0.00 1.00

5

low 0.00 1.00

moderate 0.00 1.00 moderate 0.00 1.00

high moderate 0.00 1.00 high moderate 0.00 1.00

high 0.00 1.00 high 0.00 1.00
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